• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traction Motor Size Optimization with Two-Speed Gearbox in an Electric Vehicle

Patel, Harsh January 2024 (has links)
As electric vehicles (EVs) are seen as the future of transportation, there are two significant challenges to overcome: range and cost. One effective strategy to address these issues is the optimization of powertrain components, which significantly impact both vehicle range and overall cost. In powertrain optimization, particular focus is placed on optimizing the electric motor and gearbox due to their crucial roles in vehicle performance and EV efficiency. A two-speed gearbox configuration for EVs has emerged as a solution to enhance dynamic performance and extend range. However, this approach comes with drawbacks such as increased weight and cost, leading to the prevalent use of single-speed gearboxes in the EV industry. Nonetheless, there is potential for optimizing motor size through the integration of a two-speed gearbox. The key question is whether the benefits of a smaller motor and increased vehicle range, enabled by a two-speed gearbox, outweigh its drawbacks. This study proposes a systematic method for co-optimizing the electric motor's sizing specifications and the gear ratios of a two-speed gearbox. This method achieved a 13% reduction in the required motor power for a sub-compact vehicle's specified 0-100 km/h acceleration, along with a significant motor weight reduction of up to 25%. Additionally, energy consumption was reduced by up to 3.8% for the EPA drive cycle while maintaining the same acceleration performance. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0337 seconds