Spelling suggestions: "subject:"U-Pb zirconia""
1 |
The Seiland Igneous Province, Northern Norway : age, provenance, and tectonic significanceRoberts, Richard James 27 June 2008 (has links)
The Seiland Igneous Province, of which 5400 km2 is exposed, is hosted within a
discrete terrane within the northernmost part of the Caledonian orogenic belt. The
Province consists of numerous mafic and ultramafic plutons emplaced into a
sedimentary succession indicative of a continental setting. Accompanying this mafic
magmatism is a significant volume of intermediate monzonitic and dioritic rock
(10% of the total exposed igneous rock), as well as numerous nepheline syenite and
carbonatitic intrusions.
This study reports ID-TIMS U-Pb analyses on magmatic zircons from a range of
intrusions, which indicate that the bulk of the Seiland magmatism took place between
560 Ma and 570 Ma, whereas previous studies had produced a range of ages between
420 Ma and 830 Ma. The data indicate that only one magmatic episode is represented
in the rocks of the Seiland Igneous Province, invalidating previous models involving
multiple rifting events over a period of 300 m.y.
Detailed geochemical investigation of several plutons from an evolved high alkali
suite of gabbroic intrusions in the Seiland Igneous Province has shown that these
plutons are generally enriched in trace elements compared to layered intrusions from
other areas across the globe, but that geochemically the gabbros are relatively
homogenous. The rocks yield εHf and εNd values for the gabbroic rocks ranging from
+8 to -6 and from +4 to -4, respectively, indicative of the contamination of mantlederived
material with crustal material. The most primitive isotopic values are similar
to those obtained from the carbonatites and nepheline syenites, indicating the same
mantle source gave rise to the magmas that were subsequently emplaced as the
Seiland Igneous Province. The homogeneous trace element content of the different
mafic rocks most likely indicates a relatively homogeneous mantle source for the
original magmas of the province, which has subsequently been affected by processes
of assimilation and crustal contamination. The monzonitic and dioritic bodies in the
Seiland Igneous Province are not derived from melted silicic crustal material and
may have been formed by the melting of pre-existing mafic material.
The new geochronology invalidates the metamorphic framework previously
proposed for the Seiland Igneous Province, which postulated several orogenic events
between the emplacement of the magmas and the Caledonian Orogeny. There is no
evidence for metamorphic activity in the period between 570 Ma and 420 Ma, and
there are monazites in gneissic rocks hosted within mafic rocks of Seiland age that
preserve an age of 640 Ma. This leads to the conclusion that only one metamorphic
event, the 420 Ma Caledonian Orogeny caused by the collision of Baltica and
Laurentia, affected the Seiland terrane after the emplacement of the Seiland magmas.
The new data obtained lead to a model for the evolution of the Seiland Province in
which a number of heavily modified and contaminated mantle-derived mafic
magmas derived from the mantle were emplaced into the continental crust of the
Seiland nappe between 560 and 570 Ma. This magmatism was accompanied by the
injection of alkaline magmas into the same area of the crust, and the melting of mafic
rock emplaced earlier. This magmatic event is considered to have occurred in an
extensional stress regime, possibly during intracontinental rifting or back-arc
spreading. This event took place well before the 420 Ma Caledonian Orogeny, and
thus the Seiland Igneous Province can be considered a remnant of an older geological
terrane that was emplaced onto the margin of Baltica during the Caledonian
Orogeny.
|
2 |
Ch3-IDTIMS-AgesWai Kehadeezbah Allen (14671736) 17 May 2024 (has links)
<p>This dataset contains two datasets:</p>
<p><br></p>
<p>1) 16SI166 Bedrock Sample from the Ruby Range Batholith sampled by Steve Israel while he was at the Yukon Geological Survey and was Analyzed by Jim Crowely at Boise State University. Additional sheets show progression from LA-ICPMS methods to ID-TIMS and include CL imaging for individual grains</p>
<p><br></p>
<p>2) 09_CONG Tephra Sample from the Eastern Alaska Range that was dated as apart of the NG1 measured section. This sample was collected by Jeffrey Benowitz and analyzed by Joshua Davies at the Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal </p>
|
3 |
Ch3 U-Pb Zircon Results for Bedrock Samples LA-ICPMSWai Kehadeezbah Allen (14671736) 17 May 2024 (has links)
<p>U-Pb zircon results are presented with a U-Pb zircon Datatables for Bedrock Samples excel data sheet that have information for location (GPS and Geographic) and sample information. In addition, raw data formats of each individual sample is included that have additional information about laser settings per analysis.</p>
<p><br></p>
<p>Note the raw dataset for sample 062618WA-01 is included with two other analyses that are NOT bedrock samples. Use caution.</p>
<p><br></p>
<p>All analyses were conduction at the University of Arizona LaserChron Center ( <strong>NSF-EAR 1649254 </strong> )</p>
|
4 |
Ch3- U-Pb zircon data for Plutonic Clasts from ConglomerateWai Kehadeezbah Allen (14671736) 17 May 2024 (has links)
<p>U-Pb zircon datasets for Plutonic Clasts collected from conglomerate are presented first as a summary that includes sample name, GPS location, and datatables for each sample.</p>
<p><br></p>
<p>Additionally, raw datasets for each sample are included that includes detailed information on laser settings for each analyses</p>
<p><br></p>
<p>Note: Sample 062618WA-01 is included in one raw dataset as three igneous samples were analyzed on the same sample mount. This particular sample is a bedrock sample. Use caution</p>
<p><br></p>
<p>All analyses were completed at the University of Arizona Laserchron Center (NSF-EAR 1649254)</p>
|
5 |
Ch4- IODP Exp 341 U-Pb Detrital Zircon ResultsWai Kehadeezbah Allen (14671736) 17 May 2024 (has links)
<p>This dataset includes a summary excel file that details all the datatables for each detrital zircon sample and their location relative to each site and depth collected.</p>
<p><br></p>
<p>In addition to this summary, raw datasets for each individual analyses is included that have detailed information regarding the laser settings used for analyses.</p>
<p><br></p>
<p>All datasets were analyzed at the University of Arizona LaserChron Center (NSF-EAR 1649254)</p>
|
6 |
Hidden intrusions and molybdenite mineralization beneath the Kucing Liar Skarn, Ertsberg-Grasberg Mining District, Papua, IndonesiaTrautman, Marin Cherise 01 November 2013 (has links)
The Ertsberg-Grasberg Mining District of Papua, Indonesia (Western New Guinea) hosts the Ertsberg Cu-Au Skarn, the giant Grasberg Porphyry Cu-Au deposit, and several other orebodies. Two 1700-meter-long cores beneath the Kucing Liar ore skarn (KL98-10-22) and the Grasberg Igneous Complex (KL98-10-21) contain high concentrations of vein and disseminated molybdenite. KL98-10-22, the focus of this study, intersects two previously unencountered intrusions, the “Tertiary intrusion Kucing Liar” (Tikl) and “Tertiary Pliocene intrusion” (Tpi). An intense dilatational quartz vein stockwork cuts Tikl and Ekmai Sandstone (Kkes) units, predating Tpi intrusion. Prior to these ultradeep cores, which extend almost 3 km below pre-mining surface, molybdenite was rarely observed in the district.
Geochemistry and isotopic data indicate that Tikl and Tpi intrusions originated from the same large magmatic system that emplaced other ore-forming Ertsberg-Grasberg district intrusions. Magma in a lower crustal chamber was recharged at least twice, according to Sr-Nd data. Laser-ablation inductively-coupled plasma mass spectrometry of magmatic zircons yields 238U-206Pb ages between 3.40 ± 0.12 Ma (Dalam Andesite) and 2.77 ± 0.15 Ma (Ertsberg intrusion), revealing a shorter period of igneous activity than previously measured by K-Ar and Ar-Ar dating. Analyses include composite ages of 3.28 ± 0.08 Ma for Tikl and 3.18 ± 0.11 Ma for Tpi. Inherited zircon cores indicate Precambrian (mostly Proterozoic) basement.
Molybdenite veining beneath the Kucing Liar Skarn and Grasberg Igneous Complex postdates stockwork veining and occurred before the 2.99 ± 0.11 Ma Kali dikes. Only one molybdenite vein was observed cutting Tpi. Molybdenites yielded ~3 Ma Re-Os ages and anomalous >4 Ma and <0.5 Ma ages; anomalous ages were not reproducible in follow-up analyses (this study). Smearing deformation of molybdenite (through fault activity) causes crystal strain, likely leading to annealing recrystallization. Recrystallization possibly redistributes daughter-product Os, resulting in anomalous ages from annealed material. Fluids with high Mo/Cu ratios (which were likely supercritical) precipitated late-stage molybdenite deep in the system. These fluids developed through magma chamber crystallization, which concentrated molybdenum in the melt as an incompatible element, and stripping of Cu from the magma chamber during hydrothermal activity. / text
|
7 |
Hidden intrusions and molybdenite mineralization beneath the Kucing Liar Skarn, Ertsberg-Grasberg Mining District, Papua, IndonesiaTrautman, Marin Cherise 05 November 2013 (has links)
The Ertsberg-Grasberg Mining District of Papua, Indonesia (Western New Guinea) hosts the Ertsberg Cu-Au Skarn, the giant Grasberg Porphyry Cu-Au deposit, and several other orebodies. Two 1700-meter-long cores beneath the Kucing Liar ore skarn (KL98-10-22) and the Grasberg Igneous Complex (KL98-10-21) contain high concentrations of vein and disseminated molybdenite. KL98-10-22, the focus of this study, intersects two previously unencountered intrusions, the “Tertiary intrusion Kucing Liar” (Tikl) and “Tertiary Pliocene intrusion” (Tpi). An intense dilatational quartz vein stockwork cuts Tikl and Ekmai Sandstone (Kkes) units, predating Tpi intrusion. Prior to these ultradeep cores, which extend almost 3 km below pre-mining surface, molybdenite was rarely observed in the district.
Geochemistry and isotopic data indicate that Tikl and Tpi intrusions originated from the same large magmatic system that emplaced other ore-forming Ertsberg-Grasberg district intrusions. Magma in a lower crustal chamber was recharged at least twice, according to Sr-Nd data. Laser-ablation inductively-coupled plasma mass spectrometry of magmatic zircons yields 238U-206Pb ages between 3.40 ± 0.12 Ma (Dalam Andesite) and 2.77 ± 0.15 Ma (Ertsberg intrusion), revealing a shorter period of igneous activity than previously measured by K-Ar and Ar-Ar dating. Analyses include composite ages of 3.28 ± 0.08 Ma for Tikl and 3.18 ± 0.11 Ma for Tpi. Inherited zircon cores indicate Precambrian (mostly Proterozoic) basement.
Molybdenite veining beneath the Kucing Liar Skarn and Grasberg Igneous Complex postdates stockwork veining and occurred before the 2.99 ± 0.11 Ma Kali dikes. Only one molybdenite vein was observed cutting Tpi. Molybdenites yielded ~3 Ma Re-Os ages and anomalous >4 Ma and <0.5 Ma ages; anomalous ages were not reproducible in follow-up analyses (this study). Smearing deformation of molybdenite (through fault activity) causes crystal strain, likely leading to annealing recrystallization. Recrystallization possibly redistributes daughter-product Os, resulting in anomalous ages from annealed material. Fluids with high Mo/Cu ratios (which were likely supercritical) precipitated late-stage molybdenite deep in the system. These fluids developed through magma chamber crystallization, which concentrated molybdenum in the melt as an incompatible element, and stripping of Cu from the magma chamber during hydrothermal activity. / text
|
8 |
Hidden intrusions and molybdenite mineralization beneath the Kucing Liar Skarn, Ertsberg-Grasberg Mining District, Papua, IndonesiaTrautman, Marin Cherise 05 November 2013 (has links)
The Ertsberg-Grasberg Mining District of Papua, Indonesia (Western New Guinea) hosts the Ertsberg Cu-Au Skarn, the giant Grasberg Porphyry Cu-Au deposit, and several other orebodies. Two 1700-meter-long cores beneath the Kucing Liar ore skarn (KL98-10-22) and the Grasberg Igneous Complex (KL98-10-21) contain high concentrations of vein and disseminated molybdenite. KL98-10-22, the focus of this study, intersects two previously unencountered intrusions, the “Tertiary intrusion Kucing Liar” (Tikl) and “Tertiary Pliocene intrusion” (Tpi). An intense dilatational quartz vein stockwork cuts Tikl and Ekmai Sandstone (Kkes) units, predating Tpi intrusion. Prior to these ultradeep cores, which extend almost 3 km below pre-mining surface, molybdenite was rarely observed in the district.
Geochemistry and isotopic data indicate that Tikl and Tpi intrusions originated from the same large magmatic system that emplaced other ore-forming Ertsberg-Grasberg district intrusions. Magma in a lower crustal chamber was recharged at least twice, according to Sr-Nd data. Laser-ablation inductively-coupled plasma mass spectrometry of magmatic zircons yields 238U-206Pb ages between 3.40 ± 0.12 Ma (Dalam Andesite) and 2.77 ± 0.15 Ma (Ertsberg intrusion), revealing a shorter period of igneous activity than previously measured by K-Ar and Ar-Ar dating. Analyses include composite ages of 3.28 ± 0.08 Ma for Tikl and 3.18 ± 0.11 Ma for Tpi. Inherited zircon cores indicate Precambrian (mostly Proterozoic) basement.
Molybdenite veining beneath the Kucing Liar Skarn and Grasberg Igneous Complex postdates stockwork veining and occurred before the 2.99 ± 0.11 Ma Kali dikes. Only one molybdenite vein was observed cutting Tpi. Molybdenites yielded ~3 Ma Re-Os ages and anomalous >4 Ma and <0.5 Ma ages; anomalous ages were not reproducible in follow-up analyses (this study). Smearing deformation of molybdenite (through fault activity) causes crystal strain, likely leading to annealing recrystallization. Recrystallization possibly redistributes daughter-product Os, resulting in anomalous ages from annealed material. Fluids with high Mo/Cu ratios (which were likely supercritical) precipitated late-stage molybdenite deep in the system. These fluids developed through magma chamber crystallization, which concentrated molybdenum in the melt as an incompatible element, and stripping of Cu from the magma chamber during hydrothermal activity. / text
|
9 |
Ch4- IODP EXP 341 U-Pb Zircon Results for LonestonesWai Kehadeezbah Allen (14671736) 17 May 2024 (has links)
<p>This dataset includes U-Pb zircon summary excel file with datatables for all lonestones analyzed.This file also sorts data to include information of Rim and Core analyses were appropriate.</p>
<p><br></p>
<p>In addition, raw data for each individual sample are included that have detailed information regarding parameters during each analytical session. </p>
<p><br></p>
<p>All samples were analyzed at the University of Arizona Laserchron Center (NSF-EAR 1649254)</p>
<p><br></p>
<p>High Resolition Scanning Electron Microscopy Images are also included that were imaged at the University of Arizona Laserchron Center</p>
<p><br></p>
|
10 |
Metamorphic Evolution of the Tjeliken Garnet-Phengite Gneiss, Northern Jämtland, Swedish Caledonides / Den metamorfa utvecklingen av Tjelikensgranat- och fengitförande gnejs, norra Jämtland, svenska KaledonidernaAndersson, Barbro January 2016 (has links)
The Tjeliken Mountain in northern Jämtland, central Scandinavian Caledonides is by most authors considered to belong to the Lower Seve Nappe Complex (SNC). However, recently P-T conditions similar to the Middle Seve have been constrained for the eclogite at the top of the mountain, revitalizing the tectonic debate about Tjeliken. Also the timing of high-pressure metamorphism is debated. Two earlier studies of the eclogite yield ages between 464 Ma and 446 Ma. This study focuses on the garnet-phengite gneiss hosting the eclogite. By construction of P-T conditions and dating the two discrepancies above are investigated. U/Pb zircon dating by secondary ion mass spectrometry technique (SIMS) targeted on metamorphic rims yield a concordia age of 460.2 ± 2.7 Ma corresponding well to earlier c. 463.7 ± 8.9 Ma Sm/Nd dating of the eclogite. The inferred peak mineral assemblage of the gneiss is garnet + phengite + quartz + K-feldspar + titanite ± H2O. Thermodynamic modelling reveal that garnet cores equilibrated within 1.9 - 2.6 GPa and 600 - 700 oC. Fe2+-Mg garnet-phengite thermometry involving garnet rims yields temperatures of c. 650 - 715 oC revealing relatively similar temperatures during growth of garnet core and rim, respectively. Garnet chemistry is characterised by oscillatory zoning with an antithetic pattern of Ca and Fe. The former decreases from core to rim, whereas the latter increases. The opposite trend is observed in epidote-group minerals suggesting exchange between the two minerals during garnet growth. Skeletal textures and atoll textures together with observed chemical pattern may indicate multiple garnet growth episodes. The results of the study points toward similar P-T history of the Tjeliken eclogite and gneiss in favour of the interpretation of considering the whole Tjeliken to belong to the Lower Seve. The obtained U/Pb age support other age constraints in the area suggesting high-pressure metamorphism at c. 460 Ma related to a subduction event affecting the central Scandinavian Caledonides at c. 460 - 450 Ma. / Den skandinaviska fjällkedjan, vetenskapligt benämnd de skandinaviska Kaledoniderna, har bildats på samma sätt som Himalaya och har därför liknande uppbyggnad. Från början tros fjällen ha varit av samma storlek som Himalayas berg. Deras ålder på cirka 400 miljoner år gör dock att miljontals års påverkan från vatten och vind har eroderat ner dem till dagens betydligt lägre fjäll. Den bergsyta vi ser idag utgör därför vad som från början var fjällkedjans kärna. Därför utgör de skandinaviska Kaledoniderna en unik möjlighet att studera en bergskedjas inre, vilket kan ge viktig information om bergkedjebildande processer.Forskning har visat att fjällkedjan bildades då Japetushavet mellan kontinenterna Baltika och Laurentia stängdes. Detta resulterade till slut i en kollision mellan de två kontinenterna där stora flak (skollor) av mellanliggande havsbotten och kontinentalskorpa transporterades hundratals kilometer upp på Baltika. Skollorna utgör idag våra fjäll. Känt är också att innan kontinentalkollisionen så kolliderade Baltika med öar i havet, varvid dess kontinentalkant pressades djupt ner under jordskorpan, ända ner i manteln. Bevis för detta återfinns idag i Sevesskollan ibland annat de jämtländska fjällen i form av högtrycksbergarter. Dessa har bildats under de höga tryck och temperaturer som råder på stora djup i jordens inre. Genom att studera högtrycksbergarter kan man förstå fjällkedjans bildande. Fjället Tjeliken i norra Jämtland är en av de idag kända fyndplatserna av högtrycksbergarter. Dess topp består av bergarten eklogit och dess lägre delar av gnejs, samt kvarts. Tidigare studier av eklogiten visar att den har bildats vid tryck och temperatur på cirka 2.6 GPa och 700 °C, vilket motsvarar att den varit nedpressad cirka 80 km under jordytan. Den exakta tidpunkten då detta skedde har inte kunnat fastställas då olika dateringsmetoder gett olika resultat mellan cirka 464 till 446 miljoner år sedan. I denna studie studeras tryck- och temperaturförhållanden för gnejsen som jämförelse till eklogiten, för att kunna fastställa om de båda bergarterna har genomgått samma bildningsprocesser. En ny datering genomförs också för att bättre kunna fastställa tidpunkten för högtrycksfasen.Datering baserat på radioaktivt sönderfall av uran till bly i mineralet zirkon visar att högtrycksfasen inträffade för cirka 460 miljoner år sedan. Modellering baserat på termodynamiska principer visar att kärnorna i mineralet granat bildades inom tryck- och temperaturområdet 1.9–2.6 GPa och c. 680-700 °C. En komplex kemisk zonering av granaterna indikerar att de möjligen bildades under flera tillväxtfaser, vilka inom ramen för denna studie inte kunnat modelleras, då mer avancerade metoder krävs. Denna studie visar dock att eklogiten och gnejsen sannolikt delar en gemensam tryck- och temperaturhistoria, vilken är relaterad till den djupa nedpressningen av Baltikas kontinentalkant under sen ordovicium. Dateringen stödjer även övriga åldersdateringar i området av högtrycksfasen.
|
Page generated in 0.0577 seconds