• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heart- and Sapwood Segmentation on Hyperspectral Images using Deep Learning

Hallin, Samuel, Samnegård, Simon January 2023 (has links)
For manufacturers in the wood industry, an important way to make the production more effective is to automate the process of detecting defects and different attributes on boards. One important attribute on most boards is heartwood and sapwood. This thesis project was conducted at the company MiCROTEC and aims to investigate methods to classify heartwood and sapwood on boards. The dataset used in this project consisted of oak boards. In order to increase the amount of information retrieved from the boards, hyperspectral imaging was used instead of conventional RGB cameras. Based on this data, deep learning models in the form of U-Net and U-within-U-Net architecture as well as different spectral dimensionality reduction methods were developed to segment boards in heartwood and sapwood. The performance of these deep learning models was compared to PLS-DA and SVM. PLS-DA has already been used at MiCROTEC and has been used in this work for comparison as a baseline model.   The result of the thesis work showed that a deep learning approach could increase the F1-Score from 0.730 for the baseline classifier PLS-DA to an F1-Score of 0.918, and that the different spectral reduction methods only had a small impact on the result. The increase in F1-score was mainly due to an increase in precision, since the PLS-DA had a similar recall as the deep learning models.

Page generated in 0.0302 seconds