1 |
Design and application of advanced disturbance rejection control for small fixed-wing UAVsSmith, Jean January 2018 (has links)
Small Unmanned Aerial Vehicles (UAVs) have seen continual growth in both research and commercial applications. Attractive features such as their small size, light weight and low cost are a strong driver of this growth. However, these factors also bring about some drawbacks. The light weight and small size means that small UAVs are far more susceptible to performance degradation from factors such as wind gusts. Due to the generally low cost, available sensors are somewhat limited in both quality and available measurements. For example, it is very unlikely that angle of attack is sensed by a small UAV. These aircraft are usually constructed by the end user, so a tangible amount of variation will exist between different aircraft of the same type. Depending on application, additional variation between flights from factors such as battery placement or additional sensors may exist. This makes the application of optimal model based control methods difficult. Research literature on the topic of small UAV control is very rich in regard to high level control, such as path planning in wind. A common assumption in such literature is the existence of a low level control method which is able to track demanded aircraft attitudes to complete a task. Design of such controllers in the presence of significant wind or modelling errors (factors collectively addressed as lumped disturbances herein) is rarely considered. Disturbance Observer Based Control (DOBC) is a means of improving the robustness of a baseline feedback control scheme in the presence of lumped disturbances. The method allows for the rejection of the influence of unmeasurable disturbances much more quickly than traditional integral control, while also enabling recovery of nominal feedback con- trol performance. The separation principle of DOBC allows for the design of a nominal feedback controller, which does not need to be robust against disturbances. A DOBC augmentation can then be applied to ensure this nominal performance is maintained even in the presence of disturbances. This method offers highly attractive properties for control design, and has seen a large rise in popularity in recent years. Current literature on this subject is very often conducted purely in simulation. Ad- ditionally, very advanced versions of DOBC control are now being researched. To make the method attractive to small UAV operators, it would be beneficial if a simple DOBC design could be used to realise the benefits of this method, as it would be more accessible and applicable by many. This thesis investigates the application of a linear state space disturbance observer to low level flight control of a small UAV, along with developments of the method needed to achieve good performance in flight testing. Had this work been conducted purely in simulation, it is likely many of the difficulties encountered would not have been addressed or discovered. This thesis presents four main contributions. An anti-windup method has been devel- oped which is able to alleviate the effect of control saturation on the disturbance observer dynamics. An observer is designed which explicitly considers actuator dynamics. This development was shown to enable faster observer estimation dynamics, yielding better disturbance rejection performance. During initial flight testing, a significant aeroelastic oscillation mode was discovered. This issue was studied in detail theoretically, with a pro- posed solution developed and applied. The solution was able to fully alleviate the effect in flight. Finally, design and development of an over-actuated DOBC method is presented. A method for design of DOBC for over actuated systems was developed and studied. The majority of results in this thesis are demonstrated with flight test data.
|
2 |
Acceleration based manoeuvre flight control system for unmanned aerial vehiclesPeddle, Iain K. 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: A strategy for the design of an effective, practically feasible, robust, computationally efficient
autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is
presented. The core feature of the strategy is the design of attitude independent inner loop
acceleration controllers. With these controllers implemented, the aircraft is reduced to a point
mass with a steerable acceleration vector when viewed from an outer loop guidance
perspective. Trajectory generation is also simplified with reference trajectories only required
to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and
disturbance rejection at an acceleration level.
The detailed design and associated analysis of the inner loop acceleration controllers is carried
out for the case where the airflow incidence angles are small. For this case it is shown that
under mild practically feasible conditions the inner loop dynamics decouple and become
linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional
and normalised non-dimensional time variants of the inner loop controllers are designed and
their respective advantages highlighted. Pole placement constraints that arise due to the
typically weak non-minimum phase nature of aircraft dynamics are developed.
A generic, aircraft independent guidance control algorithm, well suited for use with the inner
loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft
about a kinematically feasible reference trajectory. A number of fundamental basis trajectories
are presented which are easily linkable to form complex three dimensional manoeuvres.
Results from simulations with a number of different aircraft and reference trajectories illustrate
the versatility and functionality of the autopilot.
Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control,
Aircraft guidance, Trajectory tracking, Manoeuvre flight control. / AFRIKAANSE OPSOMMING: ’n Strategie vir die ontwerp van ’n effektiewe, prakties haalbaar, robuuste, rekenkundig
effektiewe outoloods vir drie dimensionele maneuver vlugbeheer van onbemande vliegtuie
word voorgestel. Die kerneienskap van die strategie is die ontwerp van oriëntasie-onafhanklike
binnelus-versnellingbeheerders. Hierdie beheerders stel die navigasie buitelus in staat om die
voertuig as ’n puntmassa met ’n stuurbare versnellingsvektor te beskou. Trajekgenerasie is ook
vereenvoudig deurdat verwysingstrajekte slegs kinematies haalbaar hoef te wees. Robuustheid
word verkry deur onsekerhede en versteuringsverwerping op ’n versnellingsvlak te hanteer.
Die gedetaileerde ontwerp en saamhangende analise van die binnelus versnellingsbeheerders
word uitgevoer vir die geval waar die invalshoeke klein is. Dit word aangetoon dat, onder
praktiese omstandighede, die binnelus dinamika ontkoppel kan word en lineêr word, wat die
afleiding van geslotevorm poolplasingoplossings toelaat. Dimensionele en genormaliseerde,
nie-dimensionele tydvariante van die binnelusbeheerders word ontwerp en hul onderskeidelike
voordele word uitgewys. Poolplasing beperkings, wat ontstaan as gevolg van die tipiese
geringe nie-minimum fasegedrag van voertuigdinamika, word ontwikkel.
’n Gepaste generiese, voertuig onafhanklike navigasiebeheer algoritme vir gebruik saam met
die binnelus-versnellingsbeheerders word voorgestel. Die voertuig word om ’n kinematies
haalbare verwysingstrajek deur hierdie navigasie algoritme gereguleer. ’n Aantal fundamentele
trajekte word voorgestel wat maklik gekombineer kan word om komplekse drie dimensionele
maneuvers te vorm. Die veelsydigheid en funksionaliteit van die outoloods word deur
simulasieresultate met ’n verskeidenheid voertuie en verwysingstrajekte gedemonstreer.
|
3 |
Hover control for a vertical take-off and landing vehicleWilson, John E. 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / This thesis details the development and comparison of two linear control systems
that performhover control for a vertical take-off and landing unmanned
aerial vehicle.
A non-linear mathematical model of the aircraft dynamics is developed. A
classical successive loop closure control approach is presented, which applies
static gains to the decoupled model around hover. A variable gain approach
is presented using optimal control, which linearises the aircraftmodel
around its state at fixed time steps.
Simulation performance and robustness results are examined for both systems.
Different aspects of both controller design processes and results are
compared, including navigational performance, robustness and ease of use.
|
Page generated in 0.0465 seconds