1 |
Solutions novatrices pour l'amélioration du taux de lecture de tags RFID UHF dans des environnements complexes / Innovations and solutions for the read rate improvement of UHF RFID tags in complex environmentsQuiroz Moreno, Rafael Antonio 04 March 2014 (has links)
L'identification par radio fréquence (RFID) est une technologie utilisant les ondes radio pour détecter, localiser et identifier des objets sur lesquels on place des étiquettes électroniques ou tags. Cette technologie, avec des fonctionnalités de détection supérieures à 2m, est destinée à remplacer le code-barre existant depuis les années 1970. Durant la dernière décennie, le développement de la RFID UHF a permis d'élargir le domaine des applications qui compte entre autres le marquage d'objets, le contrôle d'accès, la traçabilité, la logistique, l'inventaire, et même les transactions financières. Avec cette augmentation de la demande de services d'identification, les prévisions pour le marché de la RFID (actuellement dans les 12MM d'euros) montrent une augmentation de 3MM d'euros par an dans les 10 prochaines années. Actuellement la RFID UHF présente plusieurs limitations technologiques fortes expliquant que son développement est moins rapide que ce qui avait été envisagé il y a une vingtaine d'années. Deux problématiques industrielles importantes sont abordées dans ce travail. Tout d'abord la variété des supports sur lesquels les étiquettes RFID sont placées, cette variabilité des supports entraînant un déréglage des antennes des tags à cause du changement de la permittivité électrique et/ou de la conductivité du milieu. Dans ce contexte des solutions sont proposées au niveau de tags UHF pour une application sur surfaces en plastique ou en métal. La deuxième problématique est liée au couplage entre antennes lorsque la densité de tags est forte ou aux perturbations de diagramme (masquage) dues à l'environnement proche des antennes. Afin d'améliorer le taux de lecture dans ces conditions, une antenne lecteur miniaturisée à quatre IFAs intégrant de la diversité d'espace, de polarisation et de diagramme a été développée et testée dans un scénario à forte densité de tags / Radio Frequency Identification (RFID) is a technology designed to use the electromagnetic waves backscattering to establish detection and identification for different types of articles. Due to its longer coverage range, this technology seeks to replace the bars code existing since 1970. Recently RFID developments allow the growth in the number of applications including access control, tracking and logistic, inventory, and even electronic contactless payment between others. With this growing in the RFID services demand, the market value previsions (currently in 12MM euros) show an increase of 3MM euros per year during the next 10 years. Nowadays the RFID has many technical limitations that could explain the fact of the slow growth different of the initial estimation twenty years ago. Two main issues in RFID field are treated in this work. Initially, the variety of supports where the tags are placed on, fact that produce an antenna mismatch due to the electrical permittivity variation. For this problem some UHF tags solutions are developed and proposed to enhance the antennas performance for plastic and metallic supports applications. The second issue which is the low detection rate is clearly linked to the antennas coupling when the tags density is high or to the perturbations in the reader's radiation pattern due to the environment next to the antenna. In order to improve the detection-identification rate in these conditions, a four IFA miniaturized reader antenna with diversity is developed and tested
|
2 |
Design and Implementation of an Augmented RFID SystemBorisenko, Alexey 20 June 2012 (has links)
Ultra high frequency (UHF) radio frequency identification (RFID) systems suffer from
issues that limit their widespread deployment and limit the number of applications where
they can be used. These limitations are: lack of a well defined read zone, interference,
and environment sensitivity. To overcome these limitations a novel receiver device is
introduced into the system. The use of such device or devices mitigates the issues by
enabling more "anchor points" in the system. Two such devices exist in industry and
academia: the Astraion Sensatag and the Gen2 Listener. The drawbacks of the Sensatag
is that it offers poor performance in capturing tag signals. The Gen2 Listener is based
on the expensive software defined radio hardware.
The purpose of the thesis was to develop a receiver that will enable several new
RFID applications that are not available with current RFID systems. The receiver,
named ARR (Augmented RFID Receiver), receives tag and reader signals, which are
decoded by an FPGA and the results are reported through Ethernet. This device is
central to the augmented RFID system. To show the suitability of such an approach, the
performance of the implementation was compared to the other two outlined solutions. A
comparison of the read rate and range of the implementations were the defining factors.
The analysis showed that the ARR is capable of receiving tag signals with a read rate of
50% for passive and 66% for semi-passive tags at a one meter distance and is capable of
receiving tag signals at a maximum of 3.25 meters for passive and 5.5 meters for semi-
passive tags, with the reader being within 8 meters of the ARR. Two applications were
implemented to showcase the ARR: an RFID portal and protocol analyzer.
|
3 |
Design and Implementation of an Augmented RFID SystemBorisenko, Alexey 20 June 2012 (has links)
Ultra high frequency (UHF) radio frequency identification (RFID) systems suffer from
issues that limit their widespread deployment and limit the number of applications where
they can be used. These limitations are: lack of a well defined read zone, interference,
and environment sensitivity. To overcome these limitations a novel receiver device is
introduced into the system. The use of such device or devices mitigates the issues by
enabling more "anchor points" in the system. Two such devices exist in industry and
academia: the Astraion Sensatag and the Gen2 Listener. The drawbacks of the Sensatag
is that it offers poor performance in capturing tag signals. The Gen2 Listener is based
on the expensive software defined radio hardware.
The purpose of the thesis was to develop a receiver that will enable several new
RFID applications that are not available with current RFID systems. The receiver,
named ARR (Augmented RFID Receiver), receives tag and reader signals, which are
decoded by an FPGA and the results are reported through Ethernet. This device is
central to the augmented RFID system. To show the suitability of such an approach, the
performance of the implementation was compared to the other two outlined solutions. A
comparison of the read rate and range of the implementations were the defining factors.
The analysis showed that the ARR is capable of receiving tag signals with a read rate of
50% for passive and 66% for semi-passive tags at a one meter distance and is capable of
receiving tag signals at a maximum of 3.25 meters for passive and 5.5 meters for semi-
passive tags, with the reader being within 8 meters of the ARR. Two applications were
implemented to showcase the ARR: an RFID portal and protocol analyzer.
|
4 |
Modulated Backscatter for Low-Power High-Bandwidth CommunicationThomas, Stewart Jennings January 2013 (has links)
<p>This thesis re-examines the physical layer of a communication link in order to increase the energy efficiency of a remote device or sensor. Backscatter modulation allows a remote device to wirelessly telemeter information without operating a traditional transceiver. Instead, a backscatter device leverages a carrier transmitted by an access point or base station.</p><p>A low-power multi-state vector backscatter modulation technique is presented where quadrature amplitude modulation (QAM) signalling is generated without running a traditional transceiver. Backscatter QAM allows for significant power savings compared to traditional wireless communication schemes. For example, a device presented in this thesis that implements 16-QAM backscatter modulation is capable of streaming data at 96 Mbps with a radio communication efficiency of 15.5 pJ/bit. This is over 100x lower energy per bit than WiFi (IEEE 802.11).</p><p>This work could lead to a new class of high-bandwidth sensors or implantables with power consumption far lower than traditional radios.</p> / Dissertation
|
5 |
Design and Implementation of an Augmented RFID SystemBorisenko, Alexey January 2012 (has links)
Ultra high frequency (UHF) radio frequency identification (RFID) systems suffer from
issues that limit their widespread deployment and limit the number of applications where
they can be used. These limitations are: lack of a well defined read zone, interference,
and environment sensitivity. To overcome these limitations a novel receiver device is
introduced into the system. The use of such device or devices mitigates the issues by
enabling more "anchor points" in the system. Two such devices exist in industry and
academia: the Astraion Sensatag and the Gen2 Listener. The drawbacks of the Sensatag
is that it offers poor performance in capturing tag signals. The Gen2 Listener is based
on the expensive software defined radio hardware.
The purpose of the thesis was to develop a receiver that will enable several new
RFID applications that are not available with current RFID systems. The receiver,
named ARR (Augmented RFID Receiver), receives tag and reader signals, which are
decoded by an FPGA and the results are reported through Ethernet. This device is
central to the augmented RFID system. To show the suitability of such an approach, the
performance of the implementation was compared to the other two outlined solutions. A
comparison of the read rate and range of the implementations were the defining factors.
The analysis showed that the ARR is capable of receiving tag signals with a read rate of
50% for passive and 66% for semi-passive tags at a one meter distance and is capable of
receiving tag signals at a maximum of 3.25 meters for passive and 5.5 meters for semi-
passive tags, with the reader being within 8 meters of the ARR. Two applications were
implemented to showcase the ARR: an RFID portal and protocol analyzer.
|
6 |
Indoor Localization Using Augmented UHF RFID System for the Internet-of-ThingsWang, Jing January 2017 (has links)
Indoor localization with proximity information in ultra-high-frequency (UHF) radio-frequency-identification (RFID) is widely considered as a potential candidate of locating items in Internet-of-Things (IoT) paradigm. First, the proximity-based methods are less affected by multi-path distortion and dynamic changes of the indoor environment compared to the traditional range-based localization methods. The objective of this dissertation is to use tag-to-tag backscattering communication link in augmented UHF RFID system (AURIS) for proximity-based indoor localization solution. Tag-to-tag backscattering communication in AURIS has an obvious advantage over the conventional reader-to-tag link for proximity-based indoor localization by keeping both landmark and mobile tags simple and inexpensive. This work is the very first thesis evaluating proximity-based localization solution using tag-to-tag backscattering communication.Our research makes the contributions in terms of phase cancellation effect, the improved mathematical models and localization algorithm. First, we investigate the phase cancellation effect in the tag-to-tag backscattering communication, which has a significant effect on proximity-based localization. We then present a solution to counter such destructive effect by exploiting the spatial diversity of dual antennas. Second, a novel and realistic detection probability model of ST-to-tag detection is proposed. In AURIS, a large set of passive tags are placed at known locations as landmarks, and STs are attached mobile targets of interest. We identify two technical roadblocks of AURIS and existing localization algorithms as false synchronous detection assumption and state evolution model constraints. With the new and more realistic detection probability model we explore the use of particle filtering methodology for localizing ST, which overcomes the aforementioned roadblocks. Last, we propose a landmark-based sequential localization and mapping framework (SQLAM) for AURIS to locate STs and passive tags with unknown locations, which leverages a set of passive landmark tags to localize ST, and sequentially constructs a geographical map of passive tags with unknown locations while ST is moving in the environment. Mapping passive tags with unknown locations accurately leads to practical advantages. First, the localization capability of AURIS is not confined to the objects carrying STs. Second, the problem of failed landmark tags is addressed by including passive tags with resolved locations into landmark set. Each of the contributions is supported by extensive computer simulation to demonstrate the performance of enhancements.
|
7 |
902–928MHz UHF RFID Tag Antenna Design, Fabrication and TestKam, Chiweng 01 August 2011 (has links) (PDF)
Radio Frequency Identification (RFID) uses RF radiation to identify physical objects. With decreasing integrated circuit (IC) cost and size, RFID applications are becoming economically feasible and gaining popularity. Researchers at MIT suggest that RFID tags operating in the 900 MHz band (ultrahigh frequency, UHF) represent the best compromise of cost, read range, and capabilities [1]. Passive RFID tags, which exclude radio transmitters and internal power sources, are popular due to their small size and low cost [1].
This project produced Cal Poly’s first ever on-campus printed, assembled, and operational UHF (902 to 928 MHz) passive RFID tag. Project goals include RFID tag antenna design and simulation using the EMPro electromagnetic (EM) simulation tool [47], establishing the tag fabrication process, and testing, operational verification, and comparisons to commercial tag performance. The tag antenna design goal is to meet or exceed the read range performance of the commercial Sirit tag [23] while minimizing the required tag conductive area.
This thesis provides an overview of the UHF passive RFID tag fabrication process. Cal Poly’s Graphic Communication Department Laboratory applied a screen‑printing process to print RFID tag antenna patterns onto plastic (PET) substrates. RFID IC-substrate packages were manually attached to tag antennas with conductive adhesives and functionally verified and compared to commercial tag performance.
RFID tag antennas were impedance matched (using EMPro) to the Monza 3 RFID IC to maximize IC to antenna power transfer and RFID tag read range.Tag antenna read range (maximum reader-tag communication distance) was characterized in Cal Poly’s Anechoic Chamber, while RFID tag matching characteristics were measured using the differential probe method [33-41] and compared to simulations. Read range results indicate that one of the designs developed in this thesis outperforms a commercial UHF RFID tag.
|
8 |
Automatic liquid level indication and control using passive UHF RFID tagsAtojoko, Achimugu A., Abd-Alhameed, Raed, Tu, Yuxiang X., Elmegri, Fauzi, See, Chan H., Child, Mark B. January 2014 (has links)
No
|
9 |
Zpracování signálu UHF RFID čtečky / Signal Processing for UHF RFID ReaderNovotný, Jan January 2015 (has links)
The master’s thesis is focused on the UHF RFID reader EXIN-1 signal processing. The first part describes the concept of the EXIN-1 front end, its basic testing and possible communication interfaces for reader control and for receiving and transmitting baseband signals. The second part of this work is aimed to a simple description of EPCglobal Class-1 Generation-2 UHF RFID Protocol, especially to used modulations and codings. In the last part, a block connection between the front end and an ARM Cortex-M4 microcontroller discovery board is designed. The microcontroller is used for generating of all required signals and also for receiving incoming signals and processing them for identification numbers of RFID cards (tags), which are in the reading range of the reader. A decoding algorithm is designed in MATLAB software and implemented to the selected microcontroller. Obtained identification data are displayed on an LCD display and also sent to a PC through a serial communication.
|
10 |
Conception d'une solution RFID UHF pour l'optimisation de la logistique de bouteilles métalliques / Design of an UHF RFID solution for optimisation of metal cylinder logisticsSafraou, Ahcine 04 April 2018 (has links)
Dans le contexte actuel de transformation numérique, Air Liquide souhaite moderniser le suivi logistique de ses bouteilles de gaz à l'aide de la technologie d'identification radio (RFID) à ultra haute fréquence (UHF) qui remplacerait la solution code-barres actuelle et permettrait de dépasser certaines de ses limites. La numérisation de la traçabilité aura pour conséquence en outre d'enrichir l'interaction entre les actifs industriels et le système de gestion et de production pour ainsi créer l'écosystème IOT (Internet Of Things) spécifique à l'entreprise. Le recours à la RFID UHF est de nos jours largement répandu pour la logistique et la gestion de stocks. Cependant, les environnements métalliques, comme celui que l'on trouve avec les bouteilles de gaz, induisent des perturbations qui dégradent fortement la qualité de la communication radio fréquence (RF). Cela constitue un frein au déploiement de cette technologie dans un tel cadre. Il est nécessaire de comprendre les perturbations induites par les milieux conducteurs afin de s'en affranchir et ainsi proposer une solution efficiente. En plus de cela, les faibles niveaux d'énergie mis en jeu impliquent qu'une étude de l'ensemble des points d'amélioration des dispositifs RFID UHF tant au niveau matériel que logiciel soit réalisée. De cette étude théorique, nous avons fait le choix de concentrer nos efforts sur la conception d'un tag RFID UHF pour objets métalliques répondant au cahier des charges spécifique de l'industriel. Pour aller plus loin dans l'optimisation de la logistique et de la gestion des stocks, nous nous sommes également penchés sur l'étude et la réalisation d'un circuit de récupération d'énergie RFID UHF pour tag augmenté passif équipé d'un capteur. L'objectif est d'apporter une information sur l'état de l'actif en plus de son identité tout en évitant les contraintes liées à la présence d'une batterie ou d'une pile. / In the current context of digital transformation, Air Liquide explores the use of Ultra High Frequency (UHF) Radio Frequency IDentification (RFID) in the gas cylinders supply chain, as a replacement for the current, barcode-based, tracking and inventory solution. Digitalization will also provide the company an opportunity to develop its IOT ecosystem through enriched interaction between assets and their management system. UHF RFID is nowadays commonplace in logistics. However, metal surroundings as found in the gas cylinder's case, yield disturbances in the RF communication, and decreased inventory performances. Therefore, it is necessary to understand the adverse effects of metal surroundings to propose an ad-hoc solution. In addition, dealing with low levels of energy in the RF communication suggests leveraging both hardware and software aspects of RFID devices for potential performance improvements. On the basis of our theoretical study, we focus on the design and testing of an industrial UHF RFID tag suitable for the gas cylinder use case. To enable an even richer, more interactive supply chain, we also design and test an energy harvesting device for the UHF band, to power a tag enriched with an active sensor, without the logistic burden of a battery of limited durability.
|
Page generated in 0.0287 seconds