• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des mécanismes de survie des cellules lymphoïdes B malignes : 1- Rôle de l’enzyme de déubiquitination USP14 : 2- Effet du fingolimod dans la mort indépendante des caspases / Study of survival mechanisms in malignant B lymphocytes : 1- Role of the deubiquitinating enzyme USP14 : 2- Effect of fingolimod in caspases-independent cell death

Dubois, Nicholas 16 December 2014 (has links)
Les lymphomes non hodgkiniens (LNH) regroupent un panel hétérogène de pathologies originaires de cellules lymphatiques. Parmi les LNH à cellules B matures, la leucémie lymphoïde chronique (LLC) constitue la forme de leucémie de l’adulte la plus fréquente en Occident. La physiopathologie des LNH à cellules B matures est marquée par l’inhibition des mécanismes de la mort cellulaire, notamment via la surexpression de la protéine MCL-1. Une première partie de ce travail de thèse a été de déterminer quelles pouvaient être les enzymes de déubiquitination (DUBs) impliquées dans la survie des LNH à cellules B matures et la stabilisation de MCL-1. Notre étude a permis d’identifier la DUB USP14, qui est liée au système ubiquitine-protéasome, comme capable de réguler MCL-1 et la survie cellulaire. Nos travaux montrent également pour la première fois que l’activité DUB des cellules, ainsi que l’activité d’USP14, sont directement régulées par la signalisation du BCR via l'activité de la tyrosine kinase SYK. Le FTY720, un analogue de la sphingosine utilisé comme immunosuppresseur dans la sclérose en plaques, a montré un effet cytotoxique dans des hémopathies malignes sans toutefois que son mécanisme d’action soit clairement expliqué. Une deuxième partie de ce travail de thèse a été de caractériser la mort induite par le FTY720. Notre étude montre que la caractérisation de la morphologie cellulaire et des marqueurs induits par la mort due au FTY720 dans les LLC correspond en fait à une nécrose cellulaire programmée indépendante de RIPK1, mais dépendante d'une enzyme régulatrice de la fission mitochondriale, DRP1. / Non-Hodgkin lymphoma (NHL) include a diverse range of pathologies originate from the lymphatic cells. Among the mature B-cell NHL, chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The pathophysiology of mature B-cell NHL is marked by the inhibition of cell death mechanisms, particularly through the overexpression of MCL-1 protein. The first part of this thesis was to determine which deubiquitinating enzymes (DUBs) are involved in the survival of mature B-cell NHL and in the stabilization of MCL-1. Our study identified the DUB USP14, which is linked to the ubiquitin-proteasome system, as able to regulate MCL-1 and cell survival. Our work also shows for the first time that the DUB activity of the cells and the activity of USP14 are directly regulated by BCR signaling through the activity of the SYK tyrosine kinase. FTY720, a sphingosine analog used as an immunosuppressive drug in multiple sclerosis, showed a cytotoxic effect in hematological malignancies but its mechanism of action is not well understood. A second part of this thesis was to characterize the death induced by FTY720. Our study shows that the characterization of the cellular morphology and markers induced by death due to FTY720 in the LLC corresponds in fact to a programmed RIPK1-independent necrosis cell death, but dependent on DRP1, a regulatory enzyme of the mitochondrial fission.
2

Potential New Drugs in Lymphoma

Delforoush, Maryam January 2016 (has links)
Lymphomas are malignant tumours arising from cells in the lymphatic system. They are classified as B-cell lymphomas, T-cell lymphomas and Hodgkin lymphoma (HL). Of the B-cell lymphomas, one of the most common is diffuse large B-cell lymphoma (DLBCL). Many patients with lymphomas can be successfully treated however patients who relapse or are refractory have a poor prognosis, warranting further investigations to identify potential targets and develop novel drugs. Picropodophyllin (PPP), a potent and selective inhibitor of IGF-1R, inhibits malignant cell growth with low or no toxicity on normal cells in preclinical models. In paper I, we investigated the potential benefits of using PPP against DLBCL and found that the anti-tumor effects of PPP might possibly be explained by IGF-1R-unrelated mechanism(s). However, the inhibitory effects of PPP on lymphoma cells together with its low toxicity in vivo makes it a promising drug candidate for treatment. Melflufen, a derivative of melphalan, is currently being evaluated in a clinical phase I/II trial in relapsed or refractory multiple myeloma. In paper II, we confirmed previous reports of superior potency of melflufen over melphalan. Being active in cell lines and primary cultures of lymphoma cells as well as in a xenograft model in mice, melflufen considered being a candidate for further evaluation in treatment. bAP-15, a novel inhibitor of proteasome activity, inhibits ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase L5 (UCHL5). In paper III, we investigated the activity of b-AP15 in DLBCL and HL cell lines and compared the results to standard drugs used in treatment. Results showed inhibition of the proteasome and growth inhibition/cytotoxicity with IC50-values in the micromolar range. Treatment failure and lack of clinical benefit of proteasome inhibitors like bortezomib in DLBCL patients inspired us investigating for possible new targets, with major focus on proteasome inhibitors in DLBCL. In paper IV, we suggested that UCHL5 and/or USP14, as new targets for proteasome inhibitors in DLBCL, be further evaluated. The findings in this thesis suggest that PPP, Melflufen and b-AP15 are potential candidates for clinical drug development and UCHL5 and/or USP14 are new potential targets for proteasome inhibitors in DLBCL.
3

Mécanismes de régulation du trafic et de l’activité du récepteur GABAB

Lahaie, Nicolas 04 1900 (has links)
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination. In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization. We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation. In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability. In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.
4

Mécanismes de régulation du trafic et de l’activité du récepteur GABAB

Lahaie, Nicolas 04 1900 (has links)
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination. In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization. We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation. In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability. In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.

Page generated in 0.0236 seconds