• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Package of Homojunction of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer Light Emitting Diodes

Liao, Hung-chi 20 July 2004 (has links)
The focus of this study is mono-layer polymer light emitting diode (PLED). The emitting layer is poly-p-phenylenebenzobisoxazole (PBO). PBO is a fully conjugated heterocyclic aromatic rigid-rod polymer. Anode is indium-tin-oxide (ITO). Cathode is aluminum (Al). We used UV epoxy resin to package PLED devices, then measured current-voltage response, electroluminescence (EL) emission, and device lifetime. We demonstrate that the packaged mono-layer PBO LED reduced its demise from water and oxygen. Device lifetime increased from 1 hour to several hundred hours. At a larger bias voltage or current, emission intensity and device efficiency became higher. But decay rate increased leading to shortened device lifetime. Device temperature appeared linearly with current density. A red shift of the EL emission was observed. The £fmax. of emission spectra moved from 534 nm (initial) to 582 nm (after 100 hrs). After thermal annealing at 120¢J for ten hours, threshold voltage increased from 5 V to 12 V, current density decreased to several 10 mA/cm2, luminous intensity improved several ten times to 10-2 cd/m2, emission color changed from yellow-green to orange, luminous efficiency improved from 10-7 to 10-4 cd/A, but device lifetime declined to less than 20 hrs.
2

Light Emitting Diodes and Photovoltaic Cells of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymers Doped with Multi-wall Carbon Nanotube

Huang, Jen-Wei 01 November 2006 (has links)
Poly-p-phenylenebenzobisoxazole (PBO) and carbon nanotube (CNT) contain fully conjugated rod like backbone entailing excellent mechanical properties, thermo -oxidative stability and solvent resistance. Rigid-rod PBO is commonly processed by dissolving in methanesulfonic acid or Lewis acid. A CNT of multi-wall carbon nanotube (MWNT) was dissolved in a Lewis acid solution of PBO for dispersion, and then spun for thin film. MWNT concentration in the films was from zero up to 5 wt. %. Compared to that of pure PBO film, all PBO/MWNT composite films retained same but enhanced UV-Vis absorption peaks, according to MWNT concentration, showing that PBO and MWNT did not have overlapping electron orbitals affecting their energy gaps. The composite films were excited at 325 nm using a He-Cd laser for photoluminescence (PL) emission. All PL spectra had maximum intensity at 540 nm indicative of yellow-green light emission. The composite films were fabricated as light emitting diodes using indium-tin-oxide/glass as substrate and anode, as well as vacuum evaporated Al as cathode for respectively hole and electron injectors. In these light emitting devices, MWNT doped PBO would decrease threshold voltage for about 2 V. Up to 0.1 wt. % of MWNT, the device emission current was increased two orders of magnitude than those of the devices without MWNT. Further increase of MWNT caused a successive decrease in electroluminescence emission intensity attributed to a quench effect from aggregations of MWNTs. UV epoxy resin was applied to package the mono-layer and bilayer PBO light emitting devices. The UV epoxy resin had some gas release during encapsulation. The devices were packaged with vacuum and without vacuum encapsulation. It was demonstrated that the device encapsulation reduced its demise from water and oxygen. The vacuum encapsulation could remove gaseous volatile of the device to inhibit oxygen and moisture to prolong device lifetime. The main degradation of light emitting device was the oxidization of cathode. The interactions between nitrogen of PBO and H2O caused the formation of hydrogen bonding at room temperature. Oxygen and moisture diffused into PBO polymer and were suspected to form mid-gap state for the polymer. The mid energy band disappeared upon heat treatment before encapsulation. A device under a higher bias voltage was found to have a shorter lifetime, but a larger EL emission intensity. The EL emission intensity was not a constant under a constant current bias. The vacuum encapsulated device had two or twenty times lifetime than, respectively, the device encapsulation without vacuum evacuation or in ambient conditions. The sandwich structure of ITO/PBO/Al had no observable photovoltaic effect due to insufficient exciton separation into electrons and holes. Poly(2,3-dihydro thieno-1,4-dioxin):polystyrenesulfonate (PEDOT:PSS), a hole transferring medium, was spun into a thin-film between PBO and indium-tin-oxide to facilitate photovoltaic (PV) effect by forming a donor-acceptor interlayer to separate and to transport photoinduced charges. Optimum PBO thickness for the PV heterojunctions was about 71 nm at which the hole transferring PEDOT:PSS generated the maximum short circuit current (Isc) at a thickness of 115 nm. By using a layer of lithium fluoride (LiF) as an electron transferring layer adhering to Al cathode, the most open circuit voltage (Voc) and the maximum short circuit current (Isc) were achieved with a LiF thickness of 1-2 nm due to possible electric dipole effect leading to an increase of Voc from 0.7 V to 0.92 V and of Isc from about 0.1
3

Robust microfluidic integration for shallow channel aperture optical tweezer

Rajashekara, Yashaswini 09 September 2016 (has links)
The main objective of this thesis is to present a simple and robust hands-on technology for the fabrication of a microfluidic chip in a laboratory. The purpose of this new technology is to replace the existing PDMS based microfluidic chip used for optical trapping of diverse single nano particles. It also lists the different fabrication methods attempted and the successful integration of this chip to the optical trap system which is used to study binding at the single molecular level. Microfluidics is a quickly growing field which deals with manipulating the fluids in channels whose dimensions are few tens of micrometers. Its potential has a major impact on fields like chemical analysis and synthesis techniques, biological analysis and separation techniques, and optics and information technology. One of the main application of these microfluidic chips is in optofluidics, which is the emerging field of integrated photonics with fluidics. This provides freedom to both fields and permits the realization of optical and fluidic property. It requires small volumes of fluids and connections and eventually performs better than conventional methods of robotic fluid handling. Here, the microfluidic chip is targeted for optical trapping with double nano-hole aperture to trap a single protein. The double nanoholes integrated with this microfluidic chip show that stable trapping can be achieved below flow rates of few μL/min. This has provided many possibilities of co-trapping of proteins and study their interactions. / Graduate

Page generated in 0.04 seconds