• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 22
  • 17
  • 13
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 341
  • 341
  • 101
  • 74
  • 67
  • 64
  • 64
  • 59
  • 53
  • 52
  • 49
  • 40
  • 37
  • 36
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A Frequency-Modulated Continuous Wave-Based Boundary Detection System in a Small PCB Profile

Asgarian, Hamid R 01 December 2012 (has links) (PDF)
Falls are a cause of concern for the elderly because it can make them unable to call for help. A monitoring system can detect automatically their immobility and provide help to the elderly if they fall. Ultra-wide band signals for a monitoring system is an excellent choice since it has low enough power to not interfere with other medical and household electronics as well as being able to transmit data to a central monitoring unit. One part of this monitoring system is a boundary detection system used to verify that the monitoring system is not capturing events outside the monitoring region such as an event outside the house or in a neighboring room. The work presented in the paper, “A Frequency-Modulated Continuous Wave-Based Boundary Detection System for Determination of Monitoring Region for an Indoor Ultra-Wideband Short Range Radar-Based Eldercare Monitoring System” has determined that a frequency modulated continuous wave (FMCW) based system is an acceptable solution for boundary detection. A FMCW system can measure distance with less than 10cm accuracy if the chosen spectrum bandwidth is 1GHz or more. This thesis presents the design of a low cost approach to small PCB footprint distance detection circuitry for the boundary detection system.
92

Dielectric resonator antenna design for UWB applications

Elmegri, Fauzi, See, Chan H., Abd-Alhameed, Raed, Zebiri, Chemseddine, Excell, Peter S. January 2013 (has links)
No / A small dielectric resonator antenna has been designed for ultra wideband (UWB) communication system applications. The antenna element is a rectangular low permittivity ceramic block, with a dielectric constant of 9.4, and the modified T-shaped feed network includes a 50 ohm microstrip line to achieve strong coupling, and some bandwidth enhancement. The antenna performance is simulated and measured over a frequency band extending from 3100 MHz to 5500 MHz; the impedance bandwidth over this interval is 55.8% with VSWR <; 2, making the antenna suitable for UWB applications.
93

Dielectric resonator antenna design for lower-UWB wireless applications

Elmegri, Fauzi, See, Chan H., Abd-Alhameed, Raed, Excell, Peter S. January 2013 (has links)
No / A small dielectric resonator antenna has been designed for ultra wideband (UWB) communication system applications. The antenna element is a rectangular low permittivity ceramic block, with a dielectric constant of 9.4, and the modified T-shaped feed network includes a 50 ohm microstrip line to achieve strong coupling, and some bandwidth enhancement. The antenna performance is simulated and measured over a frequency band extending from 3100 MHz to 5500 MHz; the impedance bandwidth over this interval is 55.8% with VSWR <; 2, making the antenna suitable for UWB applications.
94

A design procedure for a 1-to-4 Ultra-Wideband Wilkinson power divider

Ali, Ammar H., Abd-Alhameed, Raed, Hu, Yim Fun, Child, Mark B. 11 1900 (has links)
No / The design of a physically small, equal phase and equal power, 1-to-4 ultra-wideband Wilkinson power divider is presented. Initially, a 1-to-2 divider was designed and optimized for the 3.1 GHz-to-10.6 GHz range. The 1-to-4 divider was then realized using three 1-to-2 dividers, and further optimized for full band insertion loss, return loss, and isolation. The circuits were constructed using a 0.75 mm thick Rogers RO3035 substrate, and experimentally validated.
95

CROSS LAYER TECHNIQUES TO ENHANCE LINK PERFORMANCE IN WIRELESS NETWORKS

SINGH, DAMANJIT January 2007 (has links)
No description available.
96

Joint scale-lag diversity in mobile wideband communications

Margetts, Adam R. 24 August 2005 (has links)
No description available.
97

Ultra-Wideband Antennas for Medical Imaging and Communication Applications

Jafari, Hamed Mazhab 08 1900 (has links)
<p> The allocation of 7.5 GHz of bandwidth by the Federal Communication Commission (FCC) for ultra-wideband (UWB) applications has provided an exciting and a challenging opportunity to design short range wireless communication and microwave imaging systems. To fully realize the potential of the UWB, communication and microwave imaging systems are required to operate over the entire UWB frequency band. The combination of the wide bandwidth requirement and the target application of the UWB systems have led to a surge of interest in designing of novel integrated circuits and antennas for the UWB applications. In any wireless communication and microwave imaging system, the antenna has a fundamental effect on the overall performance of the system, and as a result, it has attracted considerable research interest.</p> <p> This thesis focuses on the design of UWB antennas that are suitable for UWB cancer detection and wireless communication systems. Two planar antennas, one a printed monopole antenna, and the other, a printed slot antenna fed with a coplanar waveguide, are presented in this work. First, the antennas have been designed to operate in air, making them suitable for the UWB wireless short range communication applications. Measurement and simulation results indicate that both antennas achieve input impedance matching in a bandwidth of more than 7.5 GHz. The effect on the input matching of the antennas due to the variation in their geometrical parameters has been studied and both antennas have been fully characterized in air. Next, the two antennas have been redesigned to operate in a coupling medium for medical imaging applications. Both antennas achieve return loss of less than -10 dB over the entire UWB spectrum. Also, the antennas have been fully characterized while operating in the coupling medium and in proximity to a human body model. Finally, a two-element antenna array, based on the printed monopole antenna and the printed slot antenna, in co- and cross-polarized array formation, has been designed. The tumor detection capabilities of all antenna arrays for different scenarios have been studied through electromagnetic simulation and measurements.</p> / Thesis / Master of Applied Science (MASc)
98

Ultra-Wideband, Low Power, Silicon Germanium Distributed Amplifiers

El-Badry, Ehab 09 1900 (has links)
<p> As modern digital communications evolve, the requirements imposed on the systems than are required to transmit/receive the signals involved become more stringent. Amplifiers are required to provide gain from low frequencies, sometimes down to DC, up to high frequencies in the order of few to tens of gigahertz. Not only is the gainbandwidth product to be enhanced, but also the amplifier should introduce minimal distortion to the signal and consume as low power as possible. </p> <p> Distributed amplification is a multi-stage broadband circuit technique that may provide such a function. In distributed amplifiers, inter-stage transmission lines provide the capability to reach higher operational frequencies by absorbing the parasitic capacitances of the transistors used. Unlike other broadband topologies that trade-off gain and bandwidth, distributed amplifiers do not, but rather, the trade-off is between gain and delay. As gain stages are added, the gain increases as the bandwidth remains the same but the signal delay is increased. </p> <p> This work considers the silicon germanium (SiGe) heterojunction bipolar transistor (HBT) implementation of distributed amplifiers. SiGe HBTs incorporate a thin SiGe base with Ge profiling to achieve high cut-off frequencies. SiGe BiCMOS processes are silicon based and hence have the major advantage of integrability to the low cost CMOS process unlike ill-V compound semiconductors. Hence, SiGe is a promising technology capable of bridging the performance gap between silicon and m-v semiconductors. </p> <p> The proposed amplifier achieves an approximately flat gain of 6.5 dB and a noise figure of 5.8-9 dB throughout the -3 dB passband of 10.5 GHz. The power consumed is 12.2 mW, significantly lower than previously published results by up to an order of magnitude is some cases. The group delay of the amplifier was found to be approximately constant in the passband at -60 ps. </p> <p> For the first time, temperature measurements are preformed on SiGe HBT DAs. Analysis show that the gain falls drastically with temperature increase due to deterioration in input matching caused by the significant change in the transistors input impedance with temperature. Similarly the NF, increases with temperature due to the decrease in gain. Moreover, noise analysis of SiGe HBT DAs is investigated, producing simulations predicting the NF of the proposed amplifier giving insight as to how noise may be reduced in future designs. </p> / Thesis / Master of Applied Science (MASc)
99

Compact size uni-planer small metamaterial-inspired antenna for UWB applications

Jan, Naeem A., Elmegri, Fauzi, Bin-Melha, Mohammed S., Abd-Alhameed, Raed, Lashab, Mohamed, See, Chan H. January 2015 (has links)
No / In this paper, low profile planar Metamaterial-Inspired coplanar fed waveguide antenna is presented for WLAN and Ultra-Wideband applications. The antenna is based on a simple strip loaded to a rectangular patch and zigzag E-shape metamaterial-inspired unit cell. The idea behind the proposed antenna is to enable miniaturization effect. The proposed antenna can provide dual band operation, the first one is a Wi-Fi band at 2.45 GHz having impedance bandwidth of 150MHz, the second one is an ultra wide band extended from 4.2 GHz to 6.5 GHz. Two antennas are designed and fabricated with and without metamaterial-inspired loading. The simulated and measured results regarding Return loss (S11), Gain and Radiation pattern are discussed.
100

Ultra-Wideband Channel Modeling using Singularity Expansion Method

Joshi, Gaurav Gaurang 04 May 2006 (has links)
Ultra-wideband (UWB) communications is expected to revolutionize high data-rate, short-distance wireless communications, providing data-rates in excess of 100 Mbps. However, the wireless channel distorts the transmitted signal by dispersing the signal energy over time. This degrades the output signal-to-noise ratio (SNR) of a correlation based matched-filter receiver, limiting the achievable data-rate and user capacity. Most wideband channel models do not account for all the identified dispersion mechanisms namely the frequency dispersion, the resonant dispersion and the multipath dispersion. The objective of this research is to model resonant dispersion based on the Singularity Expansion Method (SEM) and provide guidelines for UWB receiver design to meet the data capacity. The original contribution of this research is a novel pole dispersion channel model that includes resonant dispersion characterization. An empirical investigation supports our claim that a correlation type matched-filter receiver using a template signal based on the pole dispersion channel model overcomes distortion related losses. Various physical mechanisms responsible for dispersion in UWB communication systems are described in detail. The applicability of the proposed dispersive channel model is evaluated using the optimal matched filter (OMF) receiver. The SEM approach, which was originally proposed for target identification using short pulse radars, offers limited benefits of due to its susceptibility to noise. A combined fuzzy-statistical approach is proposed to improve the robustness of resonant dispersion channel modeling in presence of noise. A natural extension of this doctoral research is to improve buried landmine detection as well as breast tumor detection by applying statistical and fuzzy analysis to the backscatter response. Moreover, radar target identification using UWB short pulses stands to gain tremendously from this research. / Ph. D.

Page generated in 0.0538 seconds