• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 3
  • 3
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo da eletrooxidação de monóxido de carbono em RuO2(110), e visualização morfológica e atômica de fases ricas em oxigênio na oxidação de Ru(0001) através da microscopia de varredura por tunelamento / Study of the electrooxidation of carbon monoxide on RuO2(110), and morphological and atomic visualization of oxygen-rich Ru(0001) surfaces by means of Scanning Tunneling Microscopy

Otavio Brandão Alves 20 July 2007 (has links)
Nos últimos 30 anos o crescimento paralelo das Ciências de Superfície tradicionais, em ambiente de ultra-alto vácuo (UHV), com a Eletroquímica levou ao nascimento de um novo campo interdisciplinar: Física de Superfície e Eletroquímica. Técnicas de ambas as áreas dão informações complementares e assim, quando realizadas em conjunto podem fornecer muitas respostas em nível atômico, estrutural e eletrônico quando o eletrodo está em contato com a solução eletrolítica. A intenção primordial dessa Dissertação foi o estudo fundamental das fases ricas em oxigênio presentes na superfície de Ru(0001) através de caracterizações eletroquímicas e morfológicas utilizando um sistema que permitiu o acoplamento de uma célula eletroquímica miniatura de fluxo a câmaras de UHV. Inicialmente exibi-se a modificação e a construção de equipamentos necessários para a preparação do sistema binário Au-Pt(111) e do óxido monocristalino Ru2O(110). Imagens de STM em escala morfológica mostraram o crescimento anisotrópico do filme de RuO2(110) sobre um substrato monocristalino de Ru(0001). Resultados obtidos através da técnica de Voltametria Cíclica na eletrooxidação de CO em RuO2(110) corroboraram cálculos teóricos sobre a estrutura da superfície quando esta em ambiente úmido. Superfícies modelos baseadas em ouro, crescido epitaxialmente sobre um substrato de Pt(111), foram preparadas no sistema de UHV. Dados eletroquímicos foram correlacionados às composições superficiais destas, mostrando o efeito do substrato prevalecendo sobre o efeito eletrônico. / In the last 30 years the parallel growth of the traditional Surface Science, under UHV environment, and Electrochemistry gave rise to a new interdisciplinary field: Surface Science and Electrochemistry. Techniques from both sciences give complementary information. Thus, in tandem, they are able to elucidate many atomic, structural and electronic phenomena, of an electrode in contact with a solution. The main goal of this Dissertation was the fundamental study of the Oxygen-rich Ru(0001) surface through electrochemical and morphologic characterizations using a coupled system which allowed the attachment of a miniature flow cell to UVH-chambers. Initially it is shown the construction and modifications of required equipments for the preparation of the binary system Au-Pt(111) and single crystal RuO2(110) oxide. Attainable morphological STM images demonstrated the anisotropic growth of the RuO2(110) over a Ru(0001) substrate. Results of the electrooxidation of CO on RuO2(110), obtained by means of Cyclic Voltammetry, corroborated theoretical calculations concerning the oxide superficial structure in a humid environment. Model surfaces based on Au, epitaxialy grown on a Pt(111) substrate, were prepared under UHV conditions. Electrochemical data and superficial composition were correlated, confirming that the substrate effect overcomes electronic strain effects.
12

Thin Cr2O3 (0001) Films and Co (0001) Films Fabrication for Spintronics

Cao, Yuan 12 1900 (has links)
The growth of Co (0001) films and Cr2O3 (0001)/Co (0001) has been investigated using surface analysis methods. Such films are of potential importance for a variety of spintronics applications. Co films were directly deposited on commercial Al2O3 (0001) substrates by magnetron sputter deposition or by molecular beam epitaxy (MBE), with thicknesses of ~1000Å or 30Å, respectively. Low Energy Electron Diffraction (LEED) shows hexagonal (1x1) pattern for expected epitaxial films grown at 800 K to ensure the hexagonally close-packed structure. X-ray photoemission spectroscopy (XPS) indicates the metallic cobalt binding energy for Co (2p3/2) peak, which is at 778.1eV. Atomic force microscopy (AFM) indicates the root mean square (rms) roughness of Co films has been dramatically reduced from 10 nm to 0.6 nm by optimization of experiment parameters, especially Ar pressure during plasma deposition. Ultrathin Cr2O3 films (10 to 25 Å) have been successfully fabricated on 1000Å Co (0001) films by MBE. LEED data indicate Cr2O3 has C6v symmetry and bifurcated spots from Co to Cr2O3 with Cr2O3 thickness less than 6 Å. XPS indicates the binding energy of Cr 2p(3/2) is at 576.6eV which is metallic oxide peak. XPS also shows the growth of Cr2O3 on Co (0001) form a thin Cobalt oxide interface, which is stable after exposure to ambient and 1000K UHV anneal.
13

Ultrahigh Vacuum Studies of the Reaction Kinetics and Mechanisms of Nitrate Radical with Model Organic Surfaces

Zhang, Yafen 17 December 2015 (has links)
Detailed understanding of the kinetics and mechanisms of heterogeneous reactions between gas-phase nitrate radicals, a key nighttime atmospheric oxidant, and organic particles will enable scientists to predict the fate and lifetime of the particles in the atmosphere. In an effort to acquire knowledge of interfacial reactions of nitrate radical with organics, model surfaces are created by the spontaneous adsorption of methyl-/vinyl-/hydroxyl-terminated alkanethiols on to a polycrystalline gold substrate. The self-assembled monolayers provide a well-defined surface with the desired functional group (-CH3, H2C=CH-, or HO-) positioned precisely at the gas-surface interface. The experimental approach employs in situ reflection-absorption infrared spectroscopy (RAIRS) to monitor bond rupture and formation while a well-characterized flux of NO3 impinges on the organic surface. Overall, the reaction kinetics and mechanisms were found to depend on the terminal functional group of the SAM and incident energy of the nitrate radical (NO3). For reactions of the H2C=CH-SAM with NO3, the surface reaction kinetics obtained from RAIRS reveals that the consumption rate of the terminal vinyl groups is nearly identical to the formation rate of a surface-bound nitrate species and implies that the mechanism is one of direct addition to the vinyl group rather than hydrogen abstraction. Upon nitrate radical collisions with the surface, the initial reaction probability for consumption of carbon-carbon double bonds was determined to be (2.3 ± 0.5) -- 10-3. Studies of reactions of HO-SAM with the effusive source of NO3 suggest that the reaction between NO3 and the HO-SAM is initiated by hydrogen abstraction at the terminal - 'CH2OH groups with the initial reaction probability of (6 ± 1)-- 10-3. An Arrhenius plot was obtained to measure the activation energy of the H abstraction from the HO-SAM. Further, for reactions of the HO-SAM with the high incident energy of NO3 molecules created by molecular beam, the reaction probability for H abstraction at the hydroxyl terminus was determined to be ~0.4. The significant increase in the reaction probability was attributed to the promotion in the ability of NO3 abstracting hydrogen atom at the methylene groups along hydrocarbon chains. The reaction rates of NO3 with the model organic surfaces that have been investigated are orders of magnitude greater than the rate of ozone reactions on the same surfaces which suggests that oxidation of surface-bound organics by nighttime nitrate radicals may play an important role in atmospheric chemistry despite their relative low concentration. X-ray photoelectron spectroscopy (XPS) data suggests that oxidation of the model organic surfaces by NO3 leads to the production of organic nitrates, which are stable for a period time. In addition, the effect of background gases on reactions of NO3 with model organic surfaces needs further investigations at atmospheric pressures. The results presented in this thesis should help researchers to predict the fate and environmental impacts of organic particulates with which nitrate radicals interact. / Ph. D.
14

The Dynamics of Gas-Surface Energy Transfer in Collisions of Diatomic Gases with Organic Surfaces

Wang, Guanyu 09 January 2015 (has links)
Understanding interfacial interactions at the molecular level is important for interpreting and predicting the dynamics and mechanisms of all chemistry processes. A thorough understanding of the interaction dynamics and energy transfer between gas molecules and surfaces is essential for the study of various chemical reactions. The collisions of diatomic molecules on organic surfaces are crucial to the study of atmospheric chemistry. Molecular beam scattering experiments performed in ultra-high vacuum chambers provide insight into the dynamics of gas-surface interactions. Many questions remain to be answered in the study of gas-surface interfacial chemistry. For example, what affects the energy transfer between gas molecules and surfaces? How do intermolecular forces affect the interfacial interaction dynamics? We have approached these questions by scattering diatomic gas molecules from functionalized self-assembled monolayers (SAMs). Our results indicate that the intermolecular forces between gas molecules and surfaces play an important role in the energy transfer processes. Moreover, the stronger the intermolecular forces, the more often the incident molecules come into thermal equilibrium with the surface. Furthermore, most of the previous approaches toward understanding gas-surface interaction dynamics considered the interactions as independent incidents. By scattering O2, N2, CO and NO on both CH3- and OH- terminated SAM, we found a correlation between the gas-surface interactions and a bulk property, solubility. Both being strongly affected by intermolecular forces, the gas-surface energy transfer and solubility of gases in surface-similar solvents (water for OH-SAM, n-hexane for CH3-SAM) have a positive correlation. This correlation facilitates the understanding of interfacial dynamics at the molecular level, and helps predict the outcome of the similar-size gas collisions on surfaces. / Master of Science
15

Interfacial Energy Transfer in Small Hydrocarbon Collisions with Organic Surfaces and the Decomposition of Chemical Warfare Agent Simulants within Metal-Organic Frameworks

Wang, Guanyu 09 May 2019 (has links)
A molecular-level understanding of gas-surface energy exchange and reaction mechanisms will aid in the prediction of the environmental fate of pollutants and enable advances toward catalysts for the decomposition of toxic compounds. To this end, molecular beam scattering experiments performed in an ultra-high vacuum environment have provided key insights into the initial collision and outcome of critical interfacial processes on model systems. Results from these surface science experiments show that, upon gas-surface collisions, energy transfer depends, in subtle ways, on both the properties of the gas molecules and surfaces. Specifically, model organic surfaces, comprised of long-chain methyl- and hydroxyl-terminated self-assembled monolayers (SAMs) have been employed to test how an interfacial hydrogen bonding network may affect the ability of a gas-phase compound to thermally accommodate (typically, the first step in a reaction) with the surfaces. Results indeed show that small organic compounds transfer less energy to the interconnected hydroxyl-terminated SAM (OH-SAM) than to the organic surface with methyl groups at the interface. However, the dynamics also appear to depend on the polarizability of the impinging gas-phase molecule. The π electrons in the double bond of ethene (C2H4) and the triple bond in ethyne (C2H2) appear to act as hydrogen bond acceptors when the molecules collide with the OH-SAM. The molecular beam scattering studies have demonstrated that these weak attractive forces facilitate energy transfer. A positive correlation between energy transfer and solubilities for analogous solute-solvent combinations was observed for the CH3-SAM (TD fractions: C2H6 > C2H4 > C2H2), but not for the OH-SAM (TD fractions: C2H6 > C2H2 > C2H4). The extent of energy transfer between ethane, ethene, and ethyne and the CH3-SAM appears to be determined by the degrees of freedom or rigidity of the impinging compound, while gas-surface attractive forces play a more decisive role in controlling the scattering dynamics at the OH-SAM. Beyond fundamental studies of energy transfer, this thesis provides detailed surface-science-based studies of the mechanisms involved in the uptake and decomposition of chemical warfare agent (CWA) simulants on or within metal-organic frameworks (MOFs). The work presented here represents the first such study reported in with traditional surface-science based methods have been applied to the study of MOF chemistry. The mechanism and kinetics of interactions between dimethyl methylphosphonate (DMMP) or dimethyl chlorophosphate (DMCP), key CWA simulants, and Zr6-based metal-organic frameworks (MOFs) have been investigated with in situ infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), and DFT calculations. DMMP and DMCP were found to adsorb molecularly (physisorption) to the MOFs through the formation of hydrogen bonds between the phosphoryl oxygen and the free hydroxyl groups associated with Zr6 nodes or dangling -COH groups on the surface of crystallites. Unlike UiO-66, the infrared spectra for UiO-67 and MOF-808, recorded during DMMP exposure, suggest that uptake occurs through both physisorption and chemisorption. The XPS spectra of MOF-808 zirconium 3d electrons reveal a charge redistribution following exposure to DMMP. Besides, the analysis of the phosphorus 2p electrons following exposure and thermal annealing to 600 K indicates that two types of stable phosphorus-containing species exist within the MOF. DFT calculations (performed by Professor Troya at Virginia Tech), were used to guide the IR band assignments and to help interpret the XPS features, suggest that uptake is driven by nucleophilic addition of a surface OH group to DMMP with subsequent elimination of a methoxy substituent to form strongly bound methyl methylphosphonic acid (MMPA). With similar IR features of MOF-808 upon DMCP exposure, the reaction pathway of DMCP in Zr6-MOFs may be similar to that for DMMP, but with the final product being methyl chlorophosphonic acid (elimination of the chlorine) or MMPA (elimination of a methoxy group). The rates of product formation upon DMMP exposure of the MOFs suggest that there are two distinct uptake processes. The rate constants for these processes were found to differ by approximately an order of magnitude. However, the rates of molecular uptake were found to be nearly identical to the rates of reaction, which strongly suggests that the reaction rates are diffusion limited. Overall, and perhaps most importantly, this research has demonstrated that the final products inhibit further reactions within the MOFs. The strongly bound products could not be thermally driven from the MOFs prior to the decomposition of the MOFs themselves. Therefore, new materials are needed before the ultimate goal of creating a catalyst for the air-based destruction of traditional chemical nerve agents is realized. / Doctor of Philosophy / A molecular-level understanding of gas-surface energy exchange and reaction mechanisms will aid in the prediction of the environmental fate of pollutants and enable advances toward catalysts for the decomposition of toxic compounds. Our gas-surface scattering experiments performed in an ultra-high vacuum environment have provided key insights into the outcome of critical interfacial processes on model systems. Results show that energy transfer upon gas-surface collisions depends on both the properties of the gas molecules and surfaces. Due to the formation of interfacial hydrogen bonding network in hydroxyl-terminated surface, the small organic compounds transfer less energy to it than to the organic surface with methyl groups at the interface. The dynamics also appear to depend on the properties of the impinging gas-phase molecule. The π electrons in the double bond of ethene and the triple bond in ethyne act as hydrogen bond acceptors when the molecules collide with the hydroxyl-terminated surface. The attractive forces facilitate energy transfer. A positive correlation between energy transfer and solubilities for analogous solute-solvent combinations was observed for the methyl-terminated surface, but not for the hydroxyl-terminated surface. The extent of energy transfer between ethane, ethene, and ethyne and the methyl-terminated surface appears to be determined by the degrees of freedom or rigidity of the gas, while gas-surface attractive forces play a more decisive role in controlling the scattering dynamics at the hydroxyl-terminated surface. Furthermore, this thesis provides detailed surface-science-based studies of the mechanisms involved in the uptake and decomposition of chemical warfare agent (CWA) simulants on or within metal-organic frameworks (MOFs). Dimethyl methylphosphonate (DMMP) and dimethyl chlorophosphate (DMCP), key CWA simulants, physisorbed to the MOFs through the formation of hydrogen bonds between the phosphoryl oxygen and the free hydroxyl groups associated with inorganic nodes or dangling -COH groups on the surface of crystallites. The infrared spectra for UiO-67 and MOF-808 suggest that uptake occurs through both physisorption and chemisorption. The XPS spectra of MOF-808 zirconium 3d electrons reveal a charge redistribution following exposure to DMMP. Besides, the analysis of the phosphorus 2p electrons following exposure and thermal annealing to 600 K indicates that two types of stable phosphorus-containing species exist within the MOF. DFT calculations suggest that uptake is driven by nucleophilic addition of a surface OH group to DMMP with subsequent elimination of a methoxy substituent to form strongly bound methyl methylphosphonic acid (MMPA). With similar IR features of MOF-808 upon DMCP exposure, the reaction pathway of DMCP in MOFs may be similar to that for DMMP, but with the final product being methyl chlorophosphonic acid (elimination of the chlorine) or MMPA (elimination of a methoxy group). The rates of product formation suggest that there are two distinct uptake processes. The rate constants for these processes were found to be nearly identical to the rates of physisorption, which suggests that the reaction rates are diffusion limited. Overall, this research has demonstrated that the final products inhibit further reactions within the MOFs. The strongly bound products could not be thermally driven from the MOFs prior to the decomposition of the MOFs themselves. Therefore, new materials are needed before the ultimate goal of creating a catalyst for the air-based destruction of traditional chemical nerve agents is realized.
16

Surface Interactions of Diborane

Jones, Nathan B. 22 August 2022 (has links)
Diborane (B2H6) is a hydride gas often employed in high-purity industrial surface processes such as chemical vapor deposition or epitaxial layer growth. The use of diborane at industrial scales is complicated by the formation of higher-order borane contaminants in pure diborane gas via a complex series of gas-phase reactions. An advanced, rationally designed sorbent could stabilize diborane through interfacial interactions, dramatically reducing the decomposition rate without permanently trapping the molecule. However, the design of such a sorbent would require a nuanced understanding of diborane's fundamental surface chemistry, about which little is known. In the work presented in this thesis, a novel ultra-high vacuum (UHV) system was designed and employed to characterize the fundamental interactions of diborane with a variety of surfaces. In situ Fourier-transform infrared (FTIR) spectroscopy and temperature-programmed desorption (TPD) experiments were used in conjunction with density-functional theory (DFT) calculations to elucidate binding geometries and interaction mechanisms. On non-functionalized model surfaces such as CaF2 or amorphous carbon, diborane adsorbed only at cryogenic temperatures. Hydroxylated surfaces such as amorphous silica (SiO2) adsorbed significantly more diborane, which remained at slightly higher temperatures. FTIR spectra indicated the presence of hydrogen bonding between diborane and surface hydroxyl groups. DFT calculations revealed that the interaction takes the form of a novel bifurcated dihydrogen bond. In contrast with previous reports, diborane exhibited only weak interactions with the surface hydroxyl groups of silica. DFT calculations further elucidated that the irreversible reaction of diborane with surface hydroxyls is only possible in the presence of a second nucleophile (such as adventitious water). On the metal-organic framework (MOF) UiO-66 NH2, unique chemistry was observed in which diborane reacted with the –NH2 groups of the MOF linkers, yielding stable surface-bound products. DFT calculations determined the reaction mechanism to be dissociative adsorption of diborane, resulting in two amine-bound –BH3 moieties. Importantly, it was found that these fragments persisted at room temperature and could only leave the surface via the reverse reaction. The discovery that diborane can be stored as separate fragments that re-combine to yield the parent molecule has important implications for the development of new diborane sorbents. We hypothesize that surfaces designed with fixed, precisely spaced nucleophiles could enable the reversible storage of diborane. / Doctor of Philosophy / Diborane (B2H6) is a useful but hazardous gas employed in both academia and industry, often in processes that require ultra-high-purity source gases. However, diborane reacts with itself at room temperature, making the contamination of pure diborane very difficult to avoid. This problem could potentially be solved with a specially designed solid material that would sequester diborane without destroying it, but the design of such a material would require a much better understanding of diborane's chemistry with surfaces than currently exists. In this work, we employed ultra-high vacuum (UHV) methods to study the interactions between diborane and a variety of surfaces, with the ultimate goal of determining guiding principles for the design of diborane-stabilizing sorbents. Among the materials we studied were inorganic carbon, silica (SiO2), and a class of advanced microporous materials known as metal-organic frameworks (MOFs). Inorganic materials were found not to interact meaningfully with diborane. A novel hydrogen bond was discovered between diborane and the surface of silica, but the interaction was found to be too weak to provide significant stabilization. Most MOFs behaved similarly to silica. The MOF UiO-66-NH2, however, was found to react with diborane. Through a combination of computer simulations and UHV experiments, the precise nature of the reaction was determined. On the surface of UiO 66 NH2, diborane splits into two surface-bound BH3 molecules, where it is trapped until the reaction reverses. Importantly, it was found that BH3 can only leave the surface by recombining into diborane—effectively storing diborane on the surface to be released later. We hypothesize that this useful chemistry is due to the fixed distance between chemical groups on the MOF surface. This discovery suggests a promising strategy for the design of advanced diborane sorbents.
17

Návrh nosné platformy pro nízkoteplotní UHV STM mikroskop / Design of the supporting platform for low temperature UHV STM microscope

Dao, Tomáš January 2014 (has links)
Diploma thesis deals with the design of a vibration isolated platform for low temperature scanning tunneling microscope working under ultra high vacuum (UHV STM). Cooling of the microscope is done by liquid helium using a flow cryostat designed in Institute of Scientific Instruments of the AS CR. In the thesis, general requirements of designing of an ultra high vacuum compatible devices are discussed, as well as the ways of vibrational isolation and damping. Also some ways how to restrict the transfer of vibration between vacuum devices and surroundings are mentioned. This knowledge is then applied to the design of the antivibrational microscope platform compatible with low temperature usage. For better understanding of vibrational transfer and damping, a real model of the designed platform is made and vibrational transfer characteristics are measured and compared with the theory.
18

Dynamics of Atmospherically Important Triatomics in Collisions with Model Organic Surfaces

Lu, Jessica Weidgin 25 May 2011 (has links)
Detailed investigations of molecular collisions at the gas-surface interface provide insight into the dynamics and mechanisms of important interfacial reactions. A thorough understanding of the fundamental interactions between a gas and surface is crucial to the study of heterogeneous chemistry of atmospheric organic aerosols. In addition to changing the chemical and physical properties of the particle, reactions with oxidizing gases may alter aerosol optical properties, with implications for the regional radiation budget and climate. Molecular beams of CO₂, NO₂ and O₃ were scattered from long-chain methyl (CH₃-), hydroxyl (OH-), vinyl (H₂C=CH-) and perfluorinated (CF₃(CF₂)₈-, or F-) ω-functionalized alkanethiol self-assembled monolayers (SAMs) on gold, to explore the reaction dynamics of atmospherically important triatomics on proxies for organic aerosols. Energy exchange and thermal accommodation during the gas-surface collision, the first step of most interfacial reactions, was probed by time-of-flight techniques. The final energy distribution of the scattered molecules was measured under specular scattering conditions (θi = θf = 30°). Overall, extent of energy transfer and accommodation was found to depend on the terminal functional group of the SAM, incident energy of the triatomics, and gas-surface intermolecular forces. Reaction dynamics studies of O3 scattering from H2C=CH-SAMs revealed that oxidation of the double bond depend significantly on O₃ translational energy. Our results indicate that the room-temperature reaction follows the Langmuir-Hinshelwood mechanism, requiring accommodation prior to reaction. The measurements also show that the dynamics transition to a direct reaction for higher translational energies. Possible environmental impacts of heterogeneous reactions were probed by evaluating the change in the optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols, after exposure to NO₃ and NO₂, at 532 nm and 355 nm by three aerosol analysis techniques: cavity ring-down aerosol spectroscopy (CRD-AS) at 355 nm and 532 nm, photoacoustic spectroscopy (PAS) at 532 nm, and an aerosol mass spectrometer (AMS). Heterogeneous reactions may lead to the nitration of organic-coated aerosols, which may account for atmospheric absorbance over urban areas. Developing a detailed understanding of heterogeneous reactions on atmospheric organic aerosols will help researchers to predict the fate, lifetime, and environmental impact of atmospherically important triatomics and the particles with which they collide. / Ph. D.
19

Studies of Heavy Ion Induced Desorption in the Energy Range 5-100 MeV/u

Hedlund, Emma January 2008 (has links)
<p>During operation of heavy ion accelerators a significant pressure rise has been observed when the intensity of the high energy beam was increased. The cause for this pressure rise is ion induced desorption, which is the result when beam ions collide with residual gas molecules in the accelerator, whereby they undergo charge exchange. Since the change in charge state will affect the bending radius of the particles after they have passed a bending magnet, they will not follow the required trajectory but instead collide with the vacuum chamber wall and gas are released. For the Future GSI project FAIR (Facility for Antiproton and Ion Research) there is a need to upgrade the SIS18 synchrotron in order to meet the requirements of the increased intensity. The aim of this work was to measure the desorption yields, η, (released molecules per incident ion) from materials commonly used in accelerators: 316LN stainless steel, Cu, Etched Cu, gold coated Cu, Ta and TiZrV coated stainless steel with argon and uranium beams at the energies 5-100 MeV/u. The measurements were performed at GSI and at The Svedberg Laboratory where a new dedicated teststand was built. It was found that the desorption yield scales with the electronic energy loss to the second power, decreasing for increasing impact energy above the Bragg Maximum. A feasibility study on the possibility to use laser refractometry to improve the accuracy of a specific throughput system was performed. The result was an improvement by up to 3 orders of magnitude, depending on pressure range.</p>
20

Interactions of Clean and Sulfur-modified Reactive Metal Surfaces with Aqueous Vapor and Liquid Environments : A Combined Ultra-high Vacuum/electrochemistry Study

Lin, Tien-Chih, 1966- 05 1900 (has links)
The focus of this research is to explore the molecular-level interactions between reactive metal surfaces and aqueous environments by combined ultra-high vacuum/electrochemistry (UHV-EC) methodology. The objectives of this work are to understand (1) the effects of sulfate ions on the passivity of metal oxide/hydroxide surface layer, (2) the effects of sulfur-modification on the evolution of metal oxide/hydroxide surface layer, and (3) the effects of sulfur adsorbate on cation adsorption at metal surfaces.

Page generated in 0.0756 seconds