Spelling suggestions: "subject:"ultrafast heating"" "subject:"ultralfast heating""
1 |
Nanosecond Repetitively Pulsed Discharges in Atmospheric Pressure AirRusterholtz, Diane 20 December 2012 (has links) (PDF)
Nanosecond Repetitively Pulsed (NRP) discharges in atmospheric pressure air have many potential applications. Spark NRP discharges have applications in plasma assisted combustion. These discharges tend to stabilize lean flames which produce less NOx. Furthermore, an increase of several hundreds of Kelvins in less than 20 ns has been observed following NRP spark discharges, which could be used to create nanomaterials. NRP glow discharges, while creating an important number of actives species such as atomic oxygen, do not heat the ambient gas, which allows them to be used in temperature-sensitive applications such as bio-decontamination. In the first part of this thesis, we validate experimentally the mechanism that was proposed to explain the ultrafast heating observed. Time-resolved measurements of the absolute densities of two excited states of nitrogen and of the gas temperature have been performed with calibrated Optical Emission Spectroscopy. The second part of the thesis deals with the NRP glow regime. We have shown that its existence depends on several parameters, gas temperature and pressure, voltage across the electrodes, inter-electrode distance, pulse duration, radius of curvature of the electrodes. This regime had not been observed for temperatures lower than 750 K so far. Thanks to a detailed parametrical experimental study and the analysis of the obtained results, we have succeeded in identifying the NRP glow regime at ambient temperature and we observe a new type of "multi-channel" glow regime.
|
2 |
Nanosecond Repetitively Pulsed Discharges in Atmospheric Pressure Air / Décharges nanosecondes répétitives pulsées dans l'air à pression atmosphériqueRusterholtz, Diane 20 December 2012 (has links)
Les décharges Nanosecondes Répétitives Pulsées (NRP) dans l'air à pression atmosphérique ont de nombreuses applications potentielles. Ces applications dépendent de la nature des décharges NRP. Les décharges NRP spark stabilisent les flammes pauvres, qui émettent moins d’oxydes d’azote. Un chauffage ultrarapide de plusieurs milliers de degrés en une vingtaine de nanosecondes a également été observé dans de telles décharges, ce qui permettrait par exemple la production de nanomatériaux. Les décharges NRP glow ont l'avantage de produire un grand nombre d'espèces actives comme le radical O tout en échauffant très peu le gaz ambiant, ce qui les rend utilisables dans des applications sensibles à la température comme la bio-décontamination. Dans une première partie, nous validons expérimentalement le mécanisme chimique à l'origine du chauffage ultra-rapide grâce à des mesures résolues en temps de la densité absolue de deux états excités du diazote ainsi que des mesures de température du gaz. Dans un deuxième temps, nous montrons expérimentalement l'existence du régime glow à température ambiante, celui-ci n'ayant été observé jusqu’à présent que pour des températures supérieures à 750 K. En effet, nous avons démontré que son existence dépend de nombreux paramètres : température et pression du gaz, tension entre les électrodes, distance inter-électrodes, durée de l’impulsion de tension, rayon de courbure des électrodes. Grâce à une étude expérimentale paramétrique détaillée et à l’analyse des résultats obtenus, nous avons réussi à identifier les conditions permettant d’obtenir le régime NRP glow à température ambiante et un nouveau régime de décharge de type “multi-canal” a été mis en évidence. / Nanosecond Repetitively Pulsed (NRP) discharges in atmospheric pressure air have many potential applications. Spark NRP discharges have applications in plasma assisted combustion. These discharges tend to stabilize lean flames which produce less NOx. Furthermore, an increase of several hundreds of Kelvins in less than 20 ns has been observed following NRP spark discharges, which could be used to create nanomaterials. NRP glow discharges, while creating an important number of actives species such as atomic oxygen, do not heat the ambient gas, which allows them to be used in temperature-sensitive applications such as bio-decontamination. In the first part of this thesis, we validate experimentally the mechanism that was proposed to explain the ultrafast heating observed. Time-resolved measurements of the absolute densities of two excited states of nitrogen and of the gas temperature have been performed with calibrated Optical Emission Spectroscopy. The second part of the thesis deals with the NRP glow regime. We have shown that its existence depends on several parameters, gas temperature and pressure, voltage across the electrodes, inter-electrode distance, pulse duration, radius of curvature of the electrodes. This regime had not been observed for temperatures lower than 750 K so far. Thanks to a detailed parametrical experimental study and the analysis of the obtained results, we have succeeded in identifying the NRP glow regime at ambient temperature and we observe a new type of “multi-channel” glow regime.
|
3 |
Thermodynamic and kinetic properties of metallic glasses during ultrafast heatingKüchemann, Stefan 22 December 2014 (has links)
No description available.
|
Page generated in 0.0871 seconds