• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 12
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 169
  • 169
  • 31
  • 28
  • 23
  • 21
  • 16
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Very high cycle fatigue of high performance steels

Kazymyrovych, Vitaliy January 2008 (has links)
<p>Many engineering components reach a finite fatigue life well above 10<sup>9 </sup>load cycles. Some examples of such components are found in airplanes, automobiles or high speed trains. For some materials the fatigue failures have lately been found to occur well after 10<sup>7</sup> load cycles, namely in the Very High Cycle Fatigue (VHCF) range. This finding contradicted the established concept of fatigue limit for these materials, which postulates that having sustained 10<sup>7</sup> load cycles the material is capable of enduring an infinite number of cycles provided that the service conditions are unchanged. With the development of modern ultrasonic fatigue testing equipment it became possible to experimentally establish VHCF behaviour of various materials. For most of them the existence of the fatigue limit at 10<sup>7</sup> load cycles has been proved wrong and their fatigue strength continues to decrease with increasing number of load cycles.</p><p> </p><p>One important group of materials used for the production of high performance components subjected to the VHCF is tool steels. This study explores the VHCF phenomenon using experimental data of ultrasonic fatigue testing of some tool steel grades. The causes and mechanisms of VHCF failures are investigated by means of high resolution scanning electron microscopy, and in relation to the existing theories of fatigue crack initiation and growth. The main type of VHCF origins in steels are slag inclusions.</p><p>However, other microstructural defects may also initiate fatigue failure. A particular attention is paid to the fatigue crack initiation, as it has been shown that in the VHCF range crack formation consumes the majority of the total fatigue life. Understanding the driving forces for the fatigue crack initiation is a key to improve properties of components used for very long service lives. Finite element modelling of VHCF testing was added as an additional perspective to the study by enabling calculation of local stresses at the fatigue initiating defects.</p><p> </p><p> </p>
112

Very high cycle fatigue of high performance steels

Kazymyrovych, Vitaliy January 2008 (has links)
Many engineering components reach a finite fatigue life well above 109 load cycles. Some examples of such components are found in airplanes, automobiles or high speed trains. For some materials the fatigue failures have lately been found to occur well after 107 load cycles, namely in the Very High Cycle Fatigue (VHCF) range. This finding contradicted the established concept of fatigue limit for these materials, which postulates that having sustained 107 load cycles the material is capable of enduring an infinite number of cycles provided that the service conditions are unchanged. With the development of modern ultrasonic fatigue testing equipment it became possible to experimentally establish VHCF behaviour of various materials. For most of them the existence of the fatigue limit at 107 load cycles has been proved wrong and their fatigue strength continues to decrease with increasing number of load cycles.   One important group of materials used for the production of high performance components subjected to the VHCF is tool steels. This study explores the VHCF phenomenon using experimental data of ultrasonic fatigue testing of some tool steel grades. The causes and mechanisms of VHCF failures are investigated by means of high resolution scanning electron microscopy, and in relation to the existing theories of fatigue crack initiation and growth. The main type of VHCF origins in steels are slag inclusions. However, other microstructural defects may also initiate fatigue failure. A particular attention is paid to the fatigue crack initiation, as it has been shown that in the VHCF range crack formation consumes the majority of the total fatigue life. Understanding the driving forces for the fatigue crack initiation is a key to improve properties of components used for very long service lives. Finite element modelling of VHCF testing was added as an additional perspective to the study by enabling calculation of local stresses at the fatigue initiating defects.
113

Effect Of Solid Couplants Made Of Hydrophilic Polymers In Ultrasonic Testing

Cetin, Mustafa Ilker 01 December 2003 (has links) (PDF)
This thesis investigates the effect of hydrophilic polymers as novel solid couplants in ultrasonic inspection. These polymers can absorb large quantities of water, thus become soft and flexible, and also adapt themselves very well to applications. In this study, experiments were carried out by preparing three different types of polymer membranes namely [Poly(HEMA), Poly(HEMA-co-GMA), Poly(HEMA-NN&amp / #8242 / -dH2O)] with different thicknesses and monomer contents. Swelling ratios were determined in deionized water using 9mm diameter samples, cut from each polymer. Ultrasonic velocity and sound attenuation measurements were performed with pulse-echo and immersion techniques. These results were analyzed and compared with water, typical plastics and rubbers. In order to evaluate the coupling performance of hydrophilic polymers, weights of 50g, 200g, 500g and 1 kg were used as loading conditions to change the pressure applied to the transducer. Results obtained with this study showed that hydrophilic polymers offer low attenuation at high frequencies and couple effectively while eliminating the risk of test piece contamination. The study also revealed that velocities of polymers decrease by increasing the water content. This research can be used as a guideline for an alternative choice of couplant while testing water sensitive materials in safety critical structures or where the test piece is avoided from contamination and also can be used for rough surfaces.
114

Condition Assessment of Cemented Materials Using Ultrasonic Surface Waves

Kirlangic, Ahmet Serhan 10 July 2013 (has links)
Mechanical waves provide information about the stiffness and the condition of a medium; thus, changes in medium conditions can be inferred from changes in wave velocity and attenuation. Non-destructive testing (NDT) methods based on ultrasonic waves are often more economical, practical and faster than destructive testing. Multichannel analysis of surface waves (MASW) is a well-established surface wave method used for determination of the shear-wave profile of layered medium. The MASW test configuration is also applicable to assess the condition of concrete elements using appropriate frequency range. Both attenuation and dispersion of ultrasonic waves can be evaluated by this technique. In ultrasonic testing, the characterization of a medium requires the precise measurement of its response to ultrasonic pulses to infer the presence of defects and boundary conditions. However, any ultrasonic transducer attached to a surface affects the measured response; especially at high frequencies. On the other hand, ultrasonic transducers available for engineering application are mostly used to measure wave velocities (travel time method). Therefore, these transducers do not have a flat response in the required frequency range. Moreover, in the case of full-waveform methods, the recorded signals should be normalized with respect to the transfer functions of the transducers to obtain the real response of the tested specimen. The main objective of this research is to establish a comprehensive methodology based on surface wave characteristics (velocity, attenuation and dispersion) for condition assessment of cemented materials with irregular defects. To achieve the major objective, the MASW test configuration is implemented in the ultrasonic frequency range. The measured signals are subjected to various signal processing techniques to extract accurate information. In addition, a calibration procedure is conducted to determine the frequency response functions (FRF) of the piezoelectric accelerometers outside their nominal frequency range. This calibration is performed using a high-frequency laser vibrometer. This research includes three main studies. The first study introduces the calibration approach to measure the FRFs of the accelerometers outside of their flat frequency range. The calibrated accelerometers are then used to perform MASW tests on a cemented-sand medium. The original signals and the corrected ones by eliminating the effect of the FRFs are used to determine material damping of the medium. Although, the damping ratios obtained from different accelerometers are not same, the values from the corrected signals are found closer to the characteristic damping value compared to those from the uncorrected signals. The second study investigates the sensitivity of Rayleigh wave velocity, attenuation coefficient, material damping and dispersion in phase velocity to evaluate the sensitivity of these characteristics to the damage quantity in a medium. The soft cemented-sand medium is preferred as the test specimen so that well-defined shaped defects could be created in the medium. MASW test configuration is implemented on the medium for different cases of defect depth. The recorded signals are processed using different signal processing techniques including Fourier and wavelet transforms and empirical mode decomposition to determine the surface wave characteristics accurately. A new index, ‘dispersion index’, is introduced which quantifies the defect based on the dispersive behaviour. All surface wave characteristics are found capable of reflecting the damage quantity of the test medium at different sensitivity levels. In the final study, the condition assessment of six lab-scale concrete beams with different void percent is performed. The beam specimens involving Styrofoam pellets with different ratios are tested under ultrasonic and mechanical equipment. The assessment produce established in the second study with well-defined defects is pursed for the beams with irregular defects. Among the characteristics, attenuation, P and R-wave velocities and dispersion index are found as the promising characteristics for quantifying the defect volume.
115

Defect characterization in heterogeneous civil materials using ultrasound

In, Chi-Won 17 January 2013 (has links)
Asphalt and Portland cement concrete constitutes a significant portion of the total infrastructure all over the world. It has been reported that much of this concrete infrastructure is now approaching or has already passed its original design life. Thus it is critical to be able to quantitatively assess the condition of these concrete components. In order to rehabilitate or repair the civil infrastructure, nondestructive evaluation (NDE) techniques have been of great interest for infrastructure management agencies. However concrete components present several specific NDE challenges that must be addressed. . Concrete naturally exhibits large scale heterogeneous microstructure with a great deal of local material property variability, For this reasons, many conventional NDE techniques that work well for steel and other homogeneous materials cannot be applied to concrete; concrete is unable to transmit high frequencies, as the heterogeneity of the concrete causes signals of smaller wavelengths or wavelengths equal to the nominal aggregate size to be scattered and severely attenuated. Nevertheless, progress has been made towards accurate and reliable in-place NDE of concrete structures and materials, for example impact echo, ultrasonic pulse velocity method, and the ultrasonic wave transmission method. However, the detection of smaller sized defects or remote defects that are located away from the testing location still pose problems. In addition, the large size and potential limited access conditions of civil structures raise additional challenges. To overcome the limitations of current NDE techniques for concrete, this research considers two different types of ultrasonic waves (coherent and incoherent wave) to quantitatively characterize and monitor defects in heterogeneous concrete materials. The global objective of this research is to determine the feasibility and applicability of using these ultrasonic waves as a global, rapid, reliable, and non-biased technique for the routine screening of defects or monitoring of concrete structures and materials. Three different problems are considered: 1) characterization of segregation in asphaltic concrete, 2) crack depth determination in pier cap of concrete bridge structure, and 3) monitoring of self-healing process in cement-based concrete.
116

NDT Applications for the Assessment of Asphalt Pavements, Plate Thickness, and Steel-Grout Coupling

Wu, Yen Chieh January 2012 (has links)
Nondestructive testing (NDT) uses different wave propagation modes to evaluate the internal structure of materials, revealing internal damage such as corrosion and fracturing that cannot be detected by traditional methods. Civil infrastructures are considered high priority assets in Ontario and Canada because of their value, high consequence of failure, and the continual influence of aging effects. Unexpected failure of infrastructure not only costs more than planned replacements but also results in increased safety risks. The in-situ condition assessment of civil infrastructure is critical for the successful implementation of maintenance and safety programs. Therefore, reliable nondestructive methods of inspection are required for the implementation of economical and efficient maintenance and asset management programs. Continuing technological developments in data collection, acquisition equipment, and data processing techniques have provided useful applications of nondestructive methods in many engineering fields. Among the many applications, this research study examines three applications of nondestructive testing in civil engineering: (1) condition assessment of construction joints in asphalt pavements, (2) average thickness evaluation of steel pipes, and (3) void and debonding detection in grouted steel tanks. The study on asphalt focuses on the improvement of the coupling system between the transducers and the asphalt surface, and the development of a new data processing technique to reduce user input and increase the reliability of the condition assessment of longitudinal joints. The current wavelet transmission coefficient (WTC) method requires user input, making the automatic data processing difficult. In the WTC method, the coupling between the transducers and the asphalt surface requires the use of epoxy and aluminum plates. This procedure is not practical for testing in-service roads. A new coupling mechanism using polyurethane foam to provide a spring action on the transducers and calibrated weights to generate a compression force was developed and showed good results, reducing the testing time by up to 50%. A new and robust data analysis methodology, called instantaneous transmission coefficient (ITC), is proposed based on measured instantaneous frequencies and damping ratios. The main advantage of the ITC procedure is that it can be performed automatically, reducing user input. A laboratory scale asphalt slab is used to evaluate the new methodology. Results show good agreement between the WTC and ITC measurements for both jointed and joint-free areas. The second study investigates the feasibility of the multichannel analysis of surface waves (MASW) technique for the evaluation of the average wall thickness of steel pipes. Electromagnetic NDT methods, such as the eddy current and the remote field testing, are common tools for thickness measurement of conductive materials. However, these methods give only localized results where measurements are made, making the process time consuming and inaccurate for assessing the full cross-sectional area of the pipe. Lamb waves have been used previously in the evaluation of steel pipes; however, the existing techniques require prior calibration to a theoretical wave mode, and their accuracy decreases with the length of the pipe evaluated due to wave attenuation effects. Preliminary results show the capability of the MASW test for providing reliable thickness information. The measured dispersion curves include information of fundamental modes and the higher modes, providing an improved characterization of the medium. Thicknesses between 3.2 mm and 12.7 mm are tested with an error of less than 2%. The third study explores the detection of voids in a steel tank filled with lightweight grout. A joint analysis of surface waves and Lamb waves is used for void detection and the identification of debonding conditions in a laboratory scale model of a steel tank filled with grout. Different configurations of the MASW method are conducted using an instrumented hammer (large wavelengths, 10 cm < λ < 25 cm) and a 50 kHz piezoelectric transmitter (small wavelengths, 5 cm < λ < 9 cm) as sources. The attenuation coefficient computed from the Fourier spectra of the measured signals indicates that the presence of a void has an effect on the propagation of the wave. The comparison between experimental and theoretical dispersion curves show that mainly Lamb waves are generated during the testing of the steel tank; thus, detecting the debonding conditions between the steel plate and the grout. Lamb modes are used successfully for detecting the presence of a void beneath the steel wall. The laboratory measurements are effective in the detection of the void, showing amplitudes up to 50% higher, likely because the deformation of the wall is attenuated by the grout.
117

Damage detection in concrete using diffuse ultrasound measurements and an effective medium theory for wave propagation in multi-phase materials

Deroo, Frederik 24 August 2009 (has links)
Heterogeneities in concrete caused by the random distribution of aggregate in the cement-paste matrix lead to strong scattering of ultrasound waves at wavelengths on the order of the aggregate. Use of these high frequencies is necessary to detect damage at an early stage, something that is not possible with conventional ultrasonic methods. The ultrasound energy density in this regime can be described by the diffusion equation. The objective of this research is to develop a quantitative understanding of the effects of additional scattering sources, such as small cracks in the cement-paste matrix, on the parameters of the diffusion equation; these parameters are the diffusion and the dissipation coefficients. Experimentally measured ultrasonic waves are processed using the diffusion theory to determine the diffusivity and the dissipation coefficients as a function of frequency. The samples employed are made of a Portland cement-paste matrix and regular aggregate such as gravel and sand. The results provide a basic understanding of the repeatability and consistency of diffusion measurements, with an emphasis on the nondestructive evaluation of damage in concrete. In addition, a method to describe concrete in the coherent regime is examined. Existing wave propagation models for inhomogeneous materials deal with two-phase mixtures, mostly the matrix-inclusion system such as fiber-reinforced composites. There are, however, numerous examples of multi-phase materials in which more than one phase is suspended in a matrix-phase. This research considers concrete, in which cement paste and aggregates with different sizes and mechanical properties are mixed together. Most of the models for two-phase composites cannot be extended to a multi-phase composite. Among others, the effective medium theory is considered here for two reasons: first, the formalism in this theory can easily be extended to multi-phase cases; second, the theory does not strictly define a specific microstructure between phases, which allows for a simulation of the microstructure in which different inclusions are in contact. The mathematical formulation is presented that yields the formulae for the effective density and the effective bulk and shear moduli. Finally, the calculated wave speeds and attenuations for different materials are compared with experimental results.
118

Experimental characterization of creep damage using the nonlinearity ultrasonic technique

Ehrlich, Christian 24 August 2011 (has links)
Welded steel pipes are an essential structural part of any power plant. Longer lifetimes and higher pressures in the pipes cause an increased probability of failure due to creep damage. To maintain safe operation, nondestructive evaluation techniques to detect creep damage are needed. Nonlinear acoustic techniques employing longitudinal waves have been proven to be sensitive to creep damage. The objective of this research is to develop a robust experimental procedure to reliably measure the acoustic nonlinearity parameter using longitudinal waves, and then to validate the procedure on samples of different materials and sizes. Finally the technique is applied to characterize creep damage levels around the weld of a welded steel pipe. While the experimental technique presented can only measure the relative nonlinearity, it is accurate enough to detect changes in nonlinearity due to creep damage. Measurements show an increase in nonlinearity in the heat affected zone (HAZ). Experiments after annealing the creep damaged specimen show a decrease in nonlinearity in accordance with a decrease in dislocation density. Measurements on an undamaged welded A36 steel component suggest that the heat itself is not responsible for the increase in nonlinearity.
119

Condition Assessment of Cemented Materials Using Ultrasonic Surface Waves

Kirlangic, Ahmet Serhan 10 July 2013 (has links)
Mechanical waves provide information about the stiffness and the condition of a medium; thus, changes in medium conditions can be inferred from changes in wave velocity and attenuation. Non-destructive testing (NDT) methods based on ultrasonic waves are often more economical, practical and faster than destructive testing. Multichannel analysis of surface waves (MASW) is a well-established surface wave method used for determination of the shear-wave profile of layered medium. The MASW test configuration is also applicable to assess the condition of concrete elements using appropriate frequency range. Both attenuation and dispersion of ultrasonic waves can be evaluated by this technique. In ultrasonic testing, the characterization of a medium requires the precise measurement of its response to ultrasonic pulses to infer the presence of defects and boundary conditions. However, any ultrasonic transducer attached to a surface affects the measured response; especially at high frequencies. On the other hand, ultrasonic transducers available for engineering application are mostly used to measure wave velocities (travel time method). Therefore, these transducers do not have a flat response in the required frequency range. Moreover, in the case of full-waveform methods, the recorded signals should be normalized with respect to the transfer functions of the transducers to obtain the real response of the tested specimen. The main objective of this research is to establish a comprehensive methodology based on surface wave characteristics (velocity, attenuation and dispersion) for condition assessment of cemented materials with irregular defects. To achieve the major objective, the MASW test configuration is implemented in the ultrasonic frequency range. The measured signals are subjected to various signal processing techniques to extract accurate information. In addition, a calibration procedure is conducted to determine the frequency response functions (FRF) of the piezoelectric accelerometers outside their nominal frequency range. This calibration is performed using a high-frequency laser vibrometer. This research includes three main studies. The first study introduces the calibration approach to measure the FRFs of the accelerometers outside of their flat frequency range. The calibrated accelerometers are then used to perform MASW tests on a cemented-sand medium. The original signals and the corrected ones by eliminating the effect of the FRFs are used to determine material damping of the medium. Although, the damping ratios obtained from different accelerometers are not same, the values from the corrected signals are found closer to the characteristic damping value compared to those from the uncorrected signals. The second study investigates the sensitivity of Rayleigh wave velocity, attenuation coefficient, material damping and dispersion in phase velocity to evaluate the sensitivity of these characteristics to the damage quantity in a medium. The soft cemented-sand medium is preferred as the test specimen so that well-defined shaped defects could be created in the medium. MASW test configuration is implemented on the medium for different cases of defect depth. The recorded signals are processed using different signal processing techniques including Fourier and wavelet transforms and empirical mode decomposition to determine the surface wave characteristics accurately. A new index, ‘dispersion index’, is introduced which quantifies the defect based on the dispersive behaviour. All surface wave characteristics are found capable of reflecting the damage quantity of the test medium at different sensitivity levels. In the final study, the condition assessment of six lab-scale concrete beams with different void percent is performed. The beam specimens involving Styrofoam pellets with different ratios are tested under ultrasonic and mechanical equipment. The assessment produce established in the second study with well-defined defects is pursed for the beams with irregular defects. Among the characteristics, attenuation, P and R-wave velocities and dispersion index are found as the promising characteristics for quantifying the defect volume.
120

Ultrasonic Signal Processing for Non-Destructive Testing and Evaluation

Hoseini, Seied Mohammad Reza Unknown Date
No description available.

Page generated in 0.0947 seconds