• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms and modelling of sonochemically-mediated free radical degradation of contaminants

Han, Hyungjin, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Hazardous and recalcitrant pollutants in the environments have led to a great many environmental issues these days. Many researchers have focused on the approaches to treatment of these pollutants which contaminate environments such as soil, surface and groundwater. As an advanced oxidation processes (AOPs), sonolysis which is the oxidation technology involving the use of ultrasonic irradiation, has proven to be successful for the treatment and remediation of contaminated environments. In this thesis, hydrogen peroxide formation and formic acid degradation by ultrasonic irradiation of well-characterised solutions are described under various conditions in order to determinate reaction mechanism by which peroxide degradation and contaminant degradation occur. The effect of gas properties and frequency on hydrogen peroxide and formic acid degradation are examined. Experimental results obtained are analyzed in light of the reactions occurring. Successful mathematical modeling of the result s obtained confirms that, for the most part, hydrogen peroxide and formic degradation occur by free radical generation within bubbles with subsequent transfer of these radicals to the bubble-water interface where the majority of the degradation occurs. The effect of Fe(II) addition which can lead to Fenton reactions in the bulk solution are also investigated. Experimental and model results show that the heterogeneous reactions can enhance the degradation of formic acid in the presence of Fe(II). Oxidation of phenol by ultrasonic irradiation under a variety of initial conditions and solution environments is also described and validated by a simple kinetic model. The model developed will be useful for improving our understanding of free radicals behaviour and the interplay between free radical generation and contaminant degradation.
2

Statistical Analysis and Optimization of Ammonia Nitrogen Removal from Aqueous Solutions and Landfill Leachate by Ultrasound Iradiation

Tobalt, Andrew January 2017 (has links)
The application of Ultrasound (US) irradiation to remove ammonia nitrogen from aqueous solutions, including synthetic solution and landfill leachate, at 20 kHz was investigated in this thesis. Batch experiments were carried out using two synthetic solutions with initial ammonia concentrations of 3000 and 5000 mg TAN/L in addition to two leachates from new and old landfills. The results of testing showed that US irradiation is an effective treatment technology for the removal of aqueous ammonia. More specifically, it was found that increasing sonication time and pH increased ammonia removal. The maximum observed removal of ammonia was 87.4% at a pH of 11 and sonication time of 25 minutes. Also, it was found that volatilization of ammonia to the atmosphere accounted for 0-7% of removal, the thermal effect of US accounted for 21.1-52.7%, and the non-thermal effect of US accounted for 44.5-78.8% (depending on pH and sonication time). Results of factorial design and response surface methodology showed that pH, energy output (kJ), and the interaction between the two were significant parameters. The predicted two factor interaction (2FI) model was in close agreement to the observed data (R2 = 0.94) and produced an optimum ammonia removal of 87% at a pH of 10.9 and energy output of 94.8 kJ. Analysis of variance tests showed that there were no significant differences in the percent removal of ammonia due to the non-thermal effects of US across all four solutions (synthetic and leachate) indicating that US irradiation is a non-selective treatment method for ammonia removal.
3

Rate Enhancement Of The Catalytic Hydrogenation Of An Unsaturated Ketone By Ultrasonic Irradiation

Mahishi, Shreesha 08 1900 (has links)
The aim of the work was to develop an understanding of the phenomenon of rate enhancement observed when a heterogeneous catalytic reaction system is irradiated by ultrasound. The system under investigation was the catalytic hydrogenation of an a, B - unsaturated ketone, using zinc dust and aqueous nickel chloride as a source of hydrogen. When a slurry of zinc particles and aqueous nickel chloride is stirred or sonicated, nickel deposits in the form of patches on the surface of the zinc particles and simultaneously, zinc dissolves into the solution in the form of zinc ions, a process called pitting corrosion. Hydrogen atoms are formed when hydrogen ions diffuse from the bulk, adsorb onto the nickel surface and take up electrons generated by the dissolution of zinc. Once the atoms are formed on the surface, the atoms combine to form hydrogen molecules, which desorb in the form of hydrogen gas. When ketone is added to this slurry, the hydrogen atom formed on the surface of nickel is used as the source of hydrogen for the hydrogenation reaction. In these processes, nickel serves as catalyst. The ketone first has to diffuse to the bulk, adsorb onto the surface of nickel and undergo reduction by the hydrogen atoms to form the product. The product then has to desorb from the surface and diffuse into the bulk, in order to create vacant sites on the nickel surface for the adsorption of more ketone. Experiments dealing with measurements of hydrogen evolution rates pointed out that hydrogen is not a limiting reactant, since evolution was sustained for long periods of time. The evolution rates versus time data revealed that the nature of the plots for both, the stirred and sonicated systems were similar. These facts lead us to infer that the basic mechanism of nickel deposition, pitting corrosion, etc. was similar for the two cases. To study the hydrogenation reaction, experiments were first conducted keeping the nickel catalyst surface area constant. The results of these experiments showed that the hydrogenation reaction can be explained by a first order mechanism. Changing the speed of the stirrer did not effect the rate of the reaction; hence it was inferred that the reaction was not external mass transfer controlled. It was also seen that there was an no significant difference in reaction rates between the stirred and sonicated systems. Hence we conclude that sonication does not effect any process involved in the actual process of hydrogenation, i.e., adsorption, desorption, surface reaction, etc., do not get effected. It was concluded that the observed rate enhancements of similar compounds in the same system occur only when nickel catalyst is being continuously formed. This is possible only if irradiation with ultrasound enhances the rate of formation of the surface area of the nickel deposit. To study this phenomena, experiments were conducted with continuous formation of nickel catalyst. These experiments were conducted in three ways - stirring with zinc dust, sonication with zinc dust and stirring with presonicated zinc dust. For the first two kinds of experiments, the rates were low, increased to a maximum value and then decreased, but the nature of the third kind of experiments were different. The initial rates were very high as compared to either of the other two kinds of experiments but the rate rapidly reduces and becomes comparable to the rates obtained by stirring with zinc dust. We conclude that sonication creates many active sites on the surface of the zinc particles in the form of crystal defects, which are perhaps necessary for the deposition of nickel. When presonicated zinc particles are used, there are large numbers of these sites and these get consumed rapidly when stirred with aqueous nickel chloride solution. In this work, we do not deal with this case. In the case of sonication with zinc dust, these active sites are continuously created and are consumed by nickel deposition. For the stirred system, these sites are quite small to start with and new ones are not generated since there is no irradiation by ultrasound. Hence, the rates in the latter case are low for both nickel deposition and the hydrogenation reaction. In the model, it was assumed that the rate of increase of surface area of nickel, characterized by a specific rate term k z, was proportional to the amount of nickel in the bulk and also to the amount of free zinc surface area available. Similarly, nickel which deposits on previously deposited nickel (characterized by another specific rate constant, kn) was proportional to the amount of nickel in the bulk, the nickel area already deposited and also the free zinc surface area available. The model is in excellent agreement with the experimental data obtained. The model predicted higher values of kn and kz for the sonicated system, indicating that the rate of deposition of nickel is much higher in this case than for the stirred system. Moreover, the model also predicts that the deposit in the case of a sonicated system is thinner and flatter, since it was seen that the surface area created for the same amount of nickel deposited was much higher in this case than the stirred system.
4

地熱エネルギー利用システムにおけるシリカスケール抑止技術の開発

森, 英利, 安田, 啓司 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(C)(2)14550735 課題番号: 研究代表者:森 英利 研究期間:2002-2003年度
5

Decoration of Graphene Oxide with Silver Nanoparticles and Controlling the Silver Nanoparticle Loading on Graphene Oxide

Watson, Venroy George 05 June 2014 (has links)
No description available.

Page generated in 0.1013 seconds