Spelling suggestions: "subject:"ultrasound,"" "subject:"ltrasound,""
581 |
Major Salivary Gland Ultrasound: Pilot Study of Findings and Feasibility in Childhood-Onset Systemic Lupus Erythematosus (cSLE)McDonald, Joseph 15 June 2020 (has links)
No description available.
|
582 |
Regrese koronární aterosklerózy při hypolipidemické terapii / The coronary atherosclerosis regression during hypolipidemic therapyKovárník, Tomáš January 2012 (has links)
Background: There is no study focusing on changes of coronary atherosclerosis during dual hypolipidemic therapy with statin and ezetimibe. Methods: 107 patients with stable angina were enrolled and the final analysis was performed in 89 patients. Randomization was 1:1 to the group A (atorvastatin 80mg and ezetimibe 10mg) and to the standard group S. Treatment period was 12 months. Results: Changes of percent atheroma volume (PAV) were -0,4% in group A and + 1,4% in group S, p=0,014. Combine atherosclerosis regression (increase of lumen volume together with decrease of PAV) was found more frequent in group A (40,5%) than the group S (14,9%), p=0,007. The target LDLc level < 2mmol/l, presence of at least four of five atherosclerotic risk factors, and decrease of VCAM level were independent predictors for plaque regression. There were no significant differences in plaque composition between the two groups over the duration of the study. However during analysis the two groups together, fibrous and fibro-fatty tissues decreased and dense calcification and necrotic core increased during follow-up. Conclusion: The dual hypolipidemic therapy starts atherosclerosis regression. Despite significant decrease of lipid levels the continuous plaque shift from fibro and fibro-fatty to necrotic with calcification...
|
583 |
Peaking for Maximal Strength: Muscular Adaptations and Performance OutcomesTravis, Spencer K. 01 August 2021 (has links)
The purposes of this dissertation were to 1) determine what tapering and peaking practices appear to be most effective via systematic review, 2) to identify the tapering and peaking practices used by North American powerlifters, 3) to experimentally compare muscular adaptations and performance changes following two different training cessation periods, and 4) to experimentally compare the two most common taper models following a training program aimed at peaking maximal strength. Based on the scientific literature, a step and exponential taper appeared to be the most effective tapering models used when volume-load is reduced by half over 2±1 week. Interestingly, North American powerlifters reported that the step taper was most often used while reducing volume-load by 41-50% over 7-10 days. Furthermore experimentally, there were no changes in lower body maximal strength following 3 or 5 days of training cessation. However, upper body maximal strength decreased following 5 days of training cessation. Thus, at the end of a taper, a training cessation period of 3 days appears to be effective for maintaining upper and lower body maximal strength. Furthermore, a work-matched step taper and exponential taper produced similar outcomes for 1RM back squat, bench press, and deadlift, powerlifting total and Wilks Score in strength athletes, yet deadlift 1RM changes favored the exponential taper. However, there were clear physiological differences observed at the whole muscle and muscle fiber levels that appeared to contribute to performance outcomes. This was one of the first investigations demonstrating whole muscle and muscle fiber hypertrophy following a peaking program in strength athletes. Immunohistochemical and immunoblotting analyses demonstrated an increase in myosin-heavy chain IIA content with concomitant decreases in myosin-heavy chain I and IIX content, particularly following the step-taper. These myosin isoform shifts towards a faster, higher quality phenotype were related to changes in underlying myocellular signaling (i.e. Sox6 upregulation, micro RNA-499a downregulation) responsible for fiber-type transitions. These findings indicate a shorter taper may produce favorable muscular adaptations followed by a period of short-term training cessation to prevent the loss of taper-induced performance adaptations. Overall, the findings from these investigations support the use of tapering to enhance maximal strength.
|
584 |
Transverse Abdominis Activity in Healthy Active Adults During Common Therapeutic ExercisesRosenthal, Katie S. January 2021 (has links)
No description available.
|
585 |
Scanning What Hertz: Exploring the Correlation of a Pediatric Musculoskeletal Ultrasound Scoring System with Medication Changes and JIA Disease Activity MeasuresEsteban, Ysabella 24 May 2022 (has links)
No description available.
|
586 |
Functionalization of Silica Gel by Ultrasound-Assisted Surface Suzuki CouplingKuvayskaya, Anastasia, Vasiliev, Aleksey 12 September 2019 (has links)
Mesoporous silica gel was functionalized by various organic functional groups using thiol-ene coupling of surface thiol groups with 4-vinylphenylboronic acid followed by Suzuki coupling with aromatic halides. For better performance, the synthesis was conducted under sonication. The presence of surface functional groups was confirmed by thermoanalysis, FT-IR spectroscopy and characteristic reactions of these groups. Solid-phase conditions of the synthesis eliminate the risk of side reactions of boronic acids.
|
587 |
PHOTOREFRACTIVE CRYSTAL-BASED ACOUSTO-OPTIC IMAGING IN THE NEAR-INFRARED AND ITS APPLICATIONSLai, Puxiang January 2010 (has links)
Acousto-optic (AO) sensing and imaging (AOI) is a dual-wave modality that
combines ultrasound with diffusive light to measure and/or image the optical properties of optically diffusive media, including biological tissues such as breast and brain. The light passing through a focused ultrasound beam undergoes a phase modulation at the ultrasound frequency that is detected using an adaptive interferometer scheme employing a GaAs photorefractive crystal (PRC). The PRC-based AO system operating at 1064 nm is described, along with the underlying theory, validating experiments, characterization, and optimization of this sensing and imaging apparatus. The spatial resolution of AO sensing, which is determined by spatial dimensions of the ultrasound beam or pulse, can be sub-millimeter for megahertz-frequency sound waves.A modified approach for quantifying the optical properties of diffuse media with AO sensing employs the ratio of AO signals generated at two different ultrasound focal pressures. The resulting “pressure contrast signal” (PCS), once calibrated for a particular set of pressure pulses, yields a direct measure of the spatially averaged optical transport attenuation coefficient within the interaction volume between light and sound. This is a significant improvement over current AO sensing methods since it produces a quantitative measure of the optical properties of optically diffuse media without a priori knowledge of the background illumination. It can also be used to generate images based on spatial variations in both optical scattering and absorption.
Finally, the AO sensing system is modified to monitor the irreversible optical changes associated with the tissue heating from high intensity focused ultrasound (HIFU) therapy, providing a powerful method for noninvasively sensing the onset and growth of thermal lesions in soft tissues. A single HIFU transducer is used to simultaneously generate tissue damage and pump the AO interaction. Experimental results performed in excised chicken breast demonstrate that AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposure parameters, results in more predictable lesion formation. / Bernard M. Gordon Center for Subsurface and Imaging Systems (CenSSIS) via the NSF ERC award number EEC-9986821.
|
588 |
A Fully Automatic Segmentation Method for Breast Ultrasound ImagesShan, Juan 01 May 2011 (has links)
Breast cancer is the second leading cause of death of women worldwide. Accurate lesion boundary detection is important for breast cancer diagnosis. Since many crucial features for discriminating benign and malignant lesions are based on the contour, shape, and texture of the lesion, an accurate segmentation method is essential for a successful diagnosis. Ultrasound is an effective screening tool and primarily useful for differentiating benign and malignant lesions. However, due to inherent speckle noise and low contrast of breast ultrasound imaging, automatic lesion segmentation is still a challenging task. This research focuses on developing a novel, effective, and fully automatic lesion segmentation method for breast ultrasound images. By incorporating empirical domain knowledge of breast structure, a region of interest is generated. Then, a novel enhancement algorithm (using a novel phase feature) and a newly developed neutrosophic clustering method are developed to detect the precise lesion boundary. Neutrosophy is a recently introduced branch of philosophy that deals with paradoxes, contradictions, antitheses, and antinomies. When neutrosophy is used to segment images with vague boundaries, its unique ability to deal with uncertainty is brought to bear. In this work, we apply neutrosophy to breast ultrasound image segmentation and propose a new clustering method named neutrosophic l-means. We compare the proposed method with traditional fuzzy c-means clustering and three other well-developed segmentation methods for breast ultrasound images, using the same database. Both accuracy and time complexity are analyzed. The proposed method achieves the best accuracy (TP rate is 94.36%, FP rate is 8.08%, and similarity rate is 87.39%) with a fairly rapid processing speed (about 20 seconds). Sensitivity analysis shows the robustness of the proposed method as well. Cases with multiple-lesions and severe shadowing effect (shadow areas having similar intensity values of the lesion and tightly connected with the lesion) are not included in this study.
|
589 |
Experimental Investigation of Laser-Induced Optoacoustic Wave Propagation for Damage DetectionJanuary 2019 (has links)
abstract: This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which are connected to the laser head and allow it to move on a plane. Next, a parametric study was designed to determine the optimum testing parameters of the laser. The parameters so selected were then used in a series of tests which helped in discerning how the Ultrasound Waves behave when damage is induced in the sample (in the form of addition of masses). The first test was of increasing the mases in the sample. The second test was a scan of a rectangular area of the sample with and without damage to find the effect of the added masses. Finally, the data collected in such a manner is processed with the help of the Hilbert-Huang transform to determine the time of arrival. The major benefits from this study are the fact that this is a Non-Destructive imaging technique and thus can be used as a new method for detection of defects and is fairly cheap as well. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
|
590 |
Development of novel phospholipids-based ultrasound contrast agents intended for drug delivery and cancer theranostics / ドラッグデリバリーとがん・セラノスティクスを志向した新規リン脂質基盤型超音波造影剤の開発Rodi, Abdalkader 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第19973号 / 薬科博第64号 / 新制||薬科||7(附属図書館) / 33069 / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 橋田 充, 教授 佐治 英郎, 教授 髙倉 喜信 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
|
Page generated in 0.0452 seconds