• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 21
  • 10
  • 6
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 36
  • 17
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrathin films on semiconductor substrates: growth, magneto-optical characteristics and spin injection

Guan, Wei January 2007 (has links)
Ferromagnetic metal films on semiconductors are considered to be one of the most likely candidates to achieve an efficient spin injection at room temperature, which is one of the essential requirements for spintronics devices. The work presented focused on a study of the ferromagnetic film-semiconductor heterostructures, especially their magneto-optical properties and spin injection.
2

Ultrathin Co films on Pt(111) studied by STM and MOKE

Kang, Hung-jiun 09 February 2007 (has links)
none
3

Probing the Hydration of Ultrathin Antifouling Adlayers using Neutron Reflectometry

Pawlowska, Natalia 04 July 2014 (has links)
Adverse interaction and subsequent adsorption of biomolecular species (i.e. fouling) pose a great hindrance for medical and clinical applications (e.g. biosensors). Research into the mechanism behind antifouling coatings have shown a strong link between surface hydration and antifouling behaviour due to the existence of a ‘water barrier’ which prevents proteins from adsorbing onto the surface. In a previous study, a short, mono(ethylene-glycol) silane adlayer (MEG-OH) showed significantly different antifouling behaviour in comparison to its homolog – lacking the internal ether oxygen (OTS-OH). In the present work, neutron reflectometry (and modeling) was used to investigate the water density profiles at MEG-OH and OTS-OH silane adlayers on quartz and Si/SiO2 to determine whether the internal ether oxygen affects the adlayers’ interaction with water. Despite the limitations of studying such ultrathin organic films, the two systems showed different hydration profiles supporting the link between surface hydration and antifouling.
4

Well-defined ultrathin Pd films on Pt(111): electrochemical preparation and interfacial chemistry

Park, Yeon Su 29 August 2005 (has links)
Well-defined ultrathin films of palladium, with coverages ranging from submonolayer, ΘPd = 0.5 monolayer (ML), to multilayer, ΘP d = 8 ML, were electrochemically deposited on Pt(111) using potentiostatic and potentiodynamic methods. In both methods, between the coverage regimes studied, the growth of the Pd films follows the Stranski-Krastanov mechanism. The interfacial electrochemical properties associated with the film-to-bulk transition were characterized by conventional voltammetric techniques in combination with low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). The voltammetric peaks associated with H-atom adsorption and desorption on terrace sites indicate that the Pd electrodeposit starts to exhibit bulk-like properties at a coverage of 3 ML. Voltammetric cycling, in sulfuric acid solution, between the hydrogen evolution and the double-layer regions, was found to exert minimal influence on the annealing (smoothening) of the electrodeposited Pd films. However, cycling within the same potential region in the presence of bromide anions (at which Br- adsorption/Br desorption takes place) smoothens the initially rough Pd films essentially as well as high-temperature annealing. The influence of chemisorbed bromine on the anodic dissolution of Pd was also studied; this was for comparison with previous work on the anodic dissolution of Pd, in inert electrolyte, catalyzed by chemisorbed iodine. The present studies indicated that a small but measurable amount of bromine was desorbed along with dissolution of the Pd step atoms; bromine at the Pd terrace behaved identically to iodine in that the coverage of iodine is maintained regardless of the amount or origin of the of anodically stripped Pd. Atomically smooth, well-defined ultrathin Pd films were prepared by a constant potential deposition (CPD) method followed by multiple potential cycles, in dilute Brsolution, within the double-layer region and reductive removal of Brads, by simple emersion at a potential just before the hydrogen evolution reaction potential (EHER). A previously adapted method for the same purpose involved the chemisorption of iodine onto ultrathin PdCPD films, from dilute I- solution, followed by reductive desorption of Iads in iodide-free solution at pH 10 and at a potential just before EHER.
5

Investigation of Structural and Electronic Aspects of Ultrathin Metal Nanowires

Roy, Ahin January 2015 (has links) (PDF)
The constant trend of device miniaturization along with ever-growing list of unusual behaviour of nanoscale materials has fuelled the recent research in fabrication and applications of ultrathin (~2 nm diameter) nanowires. Although semiconductor nanowires of this dimension is well-researched, molecular-scale single-crystalline metal nanowires have not been addressed in details. Such single crystalline Au nanowires are formed by oriented attachment of Au nanoparticles along [111] direction. A very low concentration of extended defects in these wires result in a high electrical conductivity, making them ideal for nanoscale interconnects. Other metal nanowires, e.g. Ag and Cu, have very low absorption co-efficient useful for fabrication of transparent conducting films. On the other hand, because of the reduced dimensions, there exists a tantalizing possibility of dominating quantum effects leading to their application in sensing and actuation. Also, speaking in terms of atomic structure, these systems suffer from intense surface stress, and the atomistic picture can be drastically different from bulk. Thus, although a myriad of applications are possible with ultrathin metal nanowires, a rigorous systematic knowledge of their atomic and electronic structure is not yet available. This thesis is the first one to model such computationally demanding systems with emphasis on their possible applications. In this thesis, we have explored various structural and electronic aspects of one-dimensional ultrathin nanowires with ab initio density functional theory coupled with experiments. The merit of Au nanowires has been tested as nanoscale interconnects. From atomistic point of view, these FCC Au nanowires exhibit an intriguing relaxation mechanism, which has been explored by both theory and experiment. The primary factor governing the relaxation mechanism was found to be the anisotropic surface stress of the bounding facets, and it is extended to explain the relaxation of other metallic nanowires. Our studies suggest that AuNWs of this dimension show semiconductor-like sensitivity towards small chemical analytes and can be used as nanoscale sensors. Also, we have found that further reducing the diameter of the Au-nanowires leads to opening of a band gap.
6

A Study of Domain Dynamics in Perpendicularly-Magnetized Ultrathin Iron Films

Abu-Libdeh, Nidal M. 04 1900 (has links)
Relaxation mechanisms in perpendicularly-magnetized ultrathin Fe/ 2 ML Ni(111)/ W(110) films, with thickness between 1.25 and 2.00 ML, have been studied using the ac magnetic susceptibility as a function of temperature and/or time. Different time scales were probed by varying the constant rate of temperature variation, R as the susceptibility was measured. After quenching the film from high temperature, the susceptibility curve was found to relax through a shift in the peak position along the temperature axis and through changes in shape, as a function of time. In general, two opposing behaviors were found; for small R (≤0.30 K/s) the susceptibility peak temperature decreases as R increases, for large R (≥ 0.30 K/s) the peak temperature increases with R. The first behavior is understood as a "dynamical observation" of a domain phase transformation. The density of topological defects in the quenched high temperature delocalized phase undergoes an activated relaxation as low temperature ordered stripe phase is established. The fundamental time scale (𝜏_0R) of this process is in the order of 1.0 s. These findings complement the results of numerical simulation [24, 26, 27] and quantify the important dynamical barriers involved in the geometrical rearrangement of domains in moving from a delocalized phase to the ordered stripe phase. The experiments at large R are sensitive to a much shorter time scale over which the domain density equilibrates when temperature is changed. This process causes an increase in the peak temperature with R that depends linearly on R over the range of values of R accessible in this study. / Thesis / Doctor of Philosophy (PhD)
7

Ultrathin metallic coatings for silver surfaces: Function and utilization in low Earth orbit

Schaefer, Glen Allen January 1993 (has links)
No description available.
8

Optimization of Magnetic Susceptibility Measurements on Ultrathin Films

Fritsch, Katharina 10 1900 (has links)
The magnetic properties of ultrathin magnetic films can be investigated in situ by the temperature dependent magnetic ac susceptibility x(T) using an optical technique - the surface magneto-optic Kerr effect (SMOKE). The performance of the ac susceptibility measurements depends primarily on the optical setup used to detect the Kerr effect and on the mechanical stability of the system. Modifications to the optical setup and the sample holder have significantly reduced the influence of noise due to mechanical vibrations. It has been found that the signal-to-noise ratio has been improved by at least a factor of 2.5 with respect to the previous setup, giving a detection limit of 15 nrad/Oe. This improvement makes measurements on antiferromagnetic ultrathin films feasible. Their susceptibility response has been estimated to be around 20-30 nrad/Oe. As a test study for the performance of the improved setup, transverse susceptibility measurements on 2 ML Fe/W(110) ferromagnetic ultrathin films are presented. These transverse susceptibility signals show interesting features. They have a narrow linewidth and are larger than expected from anisotropy considerations and other work. Also, it has been found that the in-plane and out-of-plane transverse susceptibilities arise from different mechanisms. Several scenarios that might explain the origin, size and shape of the observed signals are discussed. / Thesis / Master of Science (MSc)
9

Growth of Ultra-thin Ruthenium and Ruthenium Alloy Films for Copper Barriers

Liao, Wen, Bost, Daniel, Ekerdt, John G. 22 July 2016 (has links) (PDF)
We report approaches to grow ultrathin Ru films for application as a seed layer and Cu diffusion barrier. For chemical vapor deposition (CVD) with Ru3(CO)12 we show the role surface hydroxyl groups have in nucleating the Ru islands that grow into a continuous film in a Volmer-Weber process, and how the nucleation density can be increased by applying a CO or NH3 overpressure. Thinner continuous films evolve in the presence of a CO overpressure. We report an optimun ammonia overpressure for Ru nucleation and that leads to deposition of smoother Ru thin films. Finally, we report a comparison of amorphous Ru films that are alloyed with P or B and demonstrate 3-nm thick amorphous Ru(B) films function as a Cu diffusion barrier.
10

Dinâmica de éxcitons e transporte de cargas em heteroestruturas orgânicas / Exciton dynamics and charge transport in organic heterostructure

Valente, Gustavo Targino 07 December 2017 (has links)
A proposta desse estudo é investigar as propriedades de migração do éxciton, transferência de energia e transporte de cargas em heteroestruturas orgânicas ultrafinas compostas pela integração de um polímero semicondutor com moléculas de clorofila. A sintonização dos estados eletrônicos desses materiais torna possível a obtenção de heteroestruturas com modulação energética capazes de aprisionar éxcitons e cargas apresentando potencialidade de aplicação em Diodos Orgânicos Emissores de Luz (OLEDs). Para tal filmes de polifuoreno (PFO) (camada transportadora de carga) totalmente amorfo e filmes de clorofila (camada ativa na forma de poço de potencial) foram preparados utilizando a técnica e automontagem (LBL) combinada com spin-coating, caracterizados por microscopia confocal por varredura a laser e técnicas espectroscópicas de absorção e emissão. Investigou-se os processos fotofísicos utilizando microscopia confocal e de tempo de vida. Os resultados foram interpretados com base no modelo de transferência de energia de Förster combinado com as taxas de Miller-Abrahams e com a equação de difusão excitônica. Com essa abordagem, obteve-se uma relação entre a migração do éxciton no PFO e a transferência de energia não radiativa deste polímero para as moléculas de clorofila. Observou-se uma eficiente transferência de energia igual a 94% no regime de filmes ultrafinos. Para compreender os mecanismos de transporte de carga, implementamos e validamos o método de simulação de Monte Carlo para o transporte de carga em sistemas orgânicos desordenados. Com essa abordagem investigou-se a dinâmica das cargas em filmes poliméricos desordenados com e sem a camada de poço de potencial. Propriedades elétricas, tais como, mobilidade elétrica e coeficiente de difusão, foram obtidas e estão de acordo com os reportados na literatura. Obteve-se uma taxa de preenchimento de cargas no poço de potencial igual a 1010 buracos/s para campo elétrico de 1 MV/cm e constatou-se que a taxa aumenta com o campo elétrico. Tal abordagem apresenta-se como uma alternativa interessante para auxiliar o planejamento experimental de OLEDs baseados em heteroestruturas orgânicas. / In this study the exciton migration, energy transfer and charge transport in ultrathin organic heterostructure formed by semiconductor polymer and chlorophyll molecules were investigated. The energetic tuning between these materials promotes organic heterostructures with energetic modulation capable of trapping excitons and charges showing an application potential in Organic Light Emitting Diodes (OLEDS). Amorphous polyfluorenes (PFO) and chlorophyll a (chla) were prepared using self-assembly combined with spin-coating methods and characterized by confocal laser scanning microscopy and spectroscopic techniques. Photophysical processes were investigated using confocal and life-time microscopy and the results interpreted from the model of Förster energy combined with the Miller-Abrahams rate as well as the exciton diffusion equation. These results provided a relationship between the exciton migration in the PFO film and the non-radiative energy transfer from polymer to chla molecules. An efficient transfer of energy equal to 94% was observed. Method of the Monte Carlo simulation were implemented to investigate the charge transport in this disordered organic system. Using this method, the charge dynamics with and no potential well layer was studied. Electrical properties obtained, such as electric mobility and diffusion coefficient, are in agreement with literature. It was estimated a charge fill rate in the potential well equal to 1010 holes/s for 1 MV/cm and this parameter increases with the electric field. This approach has been shown to be an interesting alternative for the experimental design of OLEDs composed by organic heterostructure.

Page generated in 0.042 seconds