• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 5
  • 5
  • 1
  • Tagged with
  • 35
  • 30
  • 26
  • 17
  • 17
  • 17
  • 16
  • 16
  • 16
  • 16
  • 16
  • 12
  • 6
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Umwelt im Spiegel der öffentlichen Meinung : ein Vergleich aus den Perspektiven des regionalen und des kulturellen Relativismus /

Rey, Lucienne. January 1994 (has links)
Diss. Naturwiss. Bern (kein Austausch). / Literaturverz.
2

What's the Impact of the Environmental Sector? A Simultaneous Estimation of the Extended Environmental Kuznets Curve /

Wermelinger, Martin. January 2008 (has links) (PDF)
Master-Arbeit Univ. St. Gallen, 2008.
3

Bewertung der Umweltverträglichkeit organisch-chemischer Synthesen

Eissen, Marco. January 2002 (has links)
Zugl.: Oldenburg, Univ., Diss., 2001.
4

Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data

Doutriaux-Boucher, Marie, Quaas, Johannes 25 November 2015 (has links) (PDF)
Realistic simulations of clouds are of uppermost importance for climate modelling using general circulation models. Satellite data are well suited to evaluate model parametrizations. In this study we use the Laboratoire de Me´te´orologie Dynamique general circulation model (LMDZ). We evaluate the current LMDZ cloud phase parametrization, in which the repartition of condensed cloud water between liquid and ice is a function of the local temperature. Three parameters are used to derive a relation between liquid cloud water content and temperature, two of which are not physically based. We use the POLDER-1 satellite data to infer more realistic parameters by establishing statistical relationships between cloud top thermodynamical phase and cloud top temperature, consistently in both satellite data and model results. We then perform a multitude of short model integrations and derive a best estimate for the lowest local temperature where liquid water can exist in a cloud (Tice = -32°C in our parametrization). The other parameter which describes the shape of the transition between ice and liquid water is also estimated. A longer simulation has then been performed with the new parameters, resulting in an improvement in the representation of the shortwave cloud radiative forcing.
5

Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930-1989 period

Quaas, Johannes, Dufresne, Jean-Louis, Boucher, Olivier, Le Treut, Hervé 25 November 2015 (has links) (PDF)
Among anthropogenic perturbations of the Earth\'s atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930-1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day-1 decade-1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including also the aerosol direct and first indirect effects remains strongly negative.
6

Pollution trends over Europe constrain global aerosol forcing as simulated by climate models

Cherian, Ribu, Quaas, Johannes, Salzmann, Marc, Wild, Martin 14 August 2015 (has links) (PDF)
An increasing trend in surface solar radiation (solar brightening) has been observed over Europe since the 1990s, linked to economic developments and air pollution regulations and their direct as well as cloud-mediated effects on radiation. Here, we find that the all-sky solar brightening trend (1990–2005) over Europe from seven out of eight models (historical simulations in the Fifth Coupled Model Intercomparison Project) scales well with the regional and global mean effective forcing by anthropogenic aerosols (idealized “present-day” minus “preindustrial” runs). The reason for this relationship is that models that simulate stronger forcing efficiencies and stronger radiative effects by aerosol-cloud interactions show both a stronger aerosol forcing and a stronger solar brightening. The all-sky solar brightening is the observable from measurements (4.06 ± 0.60Wm−2 decade−1), which then allows to infer a global mean total aerosol effective forcing at about −1.30Wm−2 with standard deviation ±0.40Wm−2.
7

Global mean cloud feedbacks in idealized climate change experiments

Ringer, Mark A., McAvaney, Bryant J., Andronova, Natasha, Buja, Lawrence E., Esch, Monika, Ingram, William J., Li, Bin, Quaas, Johannes, Roeckner, Erich, Senior, Catherine Ann, Soden, Brian J., Volodin, Evgeny M., Webb, Mark J., Williams, Keith D. 24 November 2015 (has links) (PDF)
Global mean cloud feedbacks in ten atmosphere-only climate models are estimated in perturbed sea surface temperature (SST) experiments and the results compared to doubled CO2 experiments using mixed-layer ocean versions of these same models. The cloud feedbacks in any given model are generally not consistent: the sign of the net cloud radiative feedback may vary according to the experimental design. However, both sets of experiments indicate that the variation of the total climate feedback across the models depends primarily on the variation of the net cloud feedback. Changes in different cloud types show much greater consistency between the two experiments for any individual model and amongst the set of models analyzed here. This suggests that the SST perturbation experiments may provide useful information on the processes associated with cloud changes which is not evident when analysis is restricted to feedbacks defined in terms of the change in cloud radiative forcing.
8

Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century

Dufresne, Jean-Louis, Quaas, Johannes, Boucher, Olivier, Denvil, Sébastien, Fairhead, Laurent 24 November 2015 (has links) (PDF)
In this study, we examine the time evolution of the relative contribution of sulfate aerosols and greenhouse gases to anthropogenic climate change. We use the new IPSL-CM4 coupled climate model for which the first indirect effect of sulfate aerosols has been calibrated using POLDER satellite data. For the recent historical period the sulfate aerosols play a key role on the temperature increase with a cooling effect of 0.5 K, to be compared to the 1.4 K warming due to greenhouse gas increase. In contrast, the projected temperature change for the 21st century is remarkably independent of the effects of anthropogenic sulfate aerosols for the SRES-A2 scenario. Those results are interpreted comparing the different radiative forcings, and can be extended to other scenarios. We also highlight that the first indirect effect of aerosol strongly depends on the land surface model by changing the cloud cover.
9

Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data

Quaas, Johannes, Boucher, Olivier 24 November 2015 (has links) (PDF)
The indirect effects of anthropogenic aerosols are expected to cause a significant radiative forcing of the Earth’s climate whose magnitude, however, is still uncertain. Most climate models use parameterizations for the aerosol indirect effects based on so-called ‘‘empirical relationships’’ which link the cloud droplet number concentration to the aerosol concentration. New satellite datasets such as those from the POLDER and MODIS instruments are well suited to evaluate and improve such parameterizations at a global scale. We derive statistical relationships of cloud-top droplet radius and aerosol index (or aerosol optical depth) from satellite retrievals and fit an empirical parameterization in a general circulation model to match the relationships. When applying the fitted parameterizations in the model, the simulated radiative forcing by the first aerosol indirect effect is reduced by 50% as compared to our baseline simulation (down to -0.3 and -0.4 Wm-2 when using MODIS and POLDER satellite data, respectively).
10

Which of satellite- or model-based estimates is closer to reality for aerosol indirect forcing?

Quaas, Johannes, Boucher, Olivier, Bellouin, Nicolas, Kinne, Stefan 24 November 2015 (has links) (PDF)
In their contribution to PNAS, Penner et al. (1) used a climate model to estimate the radiative forcing by the aerosol first indirect effect (cloud albedo effect) in two different ways: first, by deriving a statistical relationship between the logarithm of cloud droplet number concentration, ln Nc, and the logarithm of aerosol optical depth, ln AOD (or the logarithm of the aerosol index, ln AI) for present-day and preindustrial aerosol fields, a method that was applied earlier to satellite data (2), and, second, by computing the radiative flux perturbation between two simulations with and without anthropogenic aerosol sources. They find a radiative forcing that is a factor of 3 lower in the former approach than in the latter [as Penner et al. (1) correctly noted, only their “inline” results are useful for the comparison].

Page generated in 0.0679 seconds