• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and optimization of a three-fingered robot hand

Jafargholibeik, Nasim 01 April 2011 (has links)
Humanoid robots have proven to be very useful and could revolutionize the way humans live. Knowing human anatomy and behaviour helps improve a robotic mechanisms ability to perform human tasks. The following thesis introduces the concept of a threefingered robot hand and its driving mechanism. The hand includes two fingers and a thumb. Using the concept of “an under actuated system”, each finger consists of three revolute joints which are driven by two actuators and tooth belt transmission system. The thumb has two joints but only one joint is active and actuated by one motor. The passive joint is designed to set the initial position of the thumb on the piano key if necessary. Required angle of rotation for each joint has been calculated through Inverse Kinematics. Once the fingertip presses the piano key, it should apply 1N force to play a note. Force Sensing Resistors at each finger tip, as a control method, are introduced to the system to accurately measure the amount of applied force from the finger tip on the key and increase the angle of rotation of the motor if needed. Stress and deformation of the joints have been studied through Finite Element Analysis. A prototype model, consisting of a single finger was built to better understanding the functionality of the concept. Analysis of this model, led to necessary modification of the transmission system and some design revisions to each link. Genetic Algorithm using MATLAB was used to optimize the performance Index of a finger. Finally the hand assembly including all the components and driving mechanism was constructed and experimented in the playing mode. / UOIT
2

3D Maneuvers For Asymmetric Under-Actuated Rigid Body

Kim, Dong Hoon 16 December 2013 (has links)
Most spacecraft are designed to be maneuvered to achieve pointing goals. This is generally accomplished by designing a three-axis control system. This work explores new maneuver strategies when only two control inputs are available: (i) sequential single-axis maneuvers and (ii) three-dimensional (3D) coupled maneuvers. The sequential single-axis maneuver strategies are established for torque, time, and fuel minimization applications. The resulting control laws are more complicated than the equivalent results for three-axis control because of the highly nonlinear control switch-times. Classical control approaches lead to optimal, but discontinuous control profiles. This problem is overcome by introducing a torque-rate penalty for the torque minimization case. Alternative approaches are also considered for achieving smooth continuous control profiles by introducing a cubic polynomial multiplicative control switch smoother for the time and fuel minimization cases. Numerical and analytical results are presented to compare optimal maneuver strategies for both nominal and failed actuator cases. The 3D maneuver strategy introduces a homotopy algorithm to achieve optimal nonlinear maneuvers minimizing the torque. Two cases are considered: (i) one of the three-axis control actuators fails and (ii) two control actuators fail among four control actuators. The solution strategy first solves the case when all three actuators are available. Then, the failed actuator case is recovered by introducing a homotopy embedding parameter, ε, into the nonlinear dynamics equation. By sweeping ε, a sequence of neighboring optimal control problems is solved that starts with the original maneuver problem and arrives at the solution for the under-actuated case. As ε approaches 1, the designated actuator no longer provides control inputs to the spacecraft, effectively modeling the failed actuator condition. This problem is complex for two reasons: (i) the governing equations are nonlinear and (ii) ε fundamentally alters the spacecraft’s controllability. Davidenko’s method is introduced for developing an ordinary differential equation for the costate variable as a function of ε. For each value of ε, the costate initial conditions are iteratively adjusted so that the terminal boundary conditions for the 3D maneuver are achieved. Optimal control applications are presented for both rest-to-rest and motion-to-rest cases that demonstrate the effectiveness of the proposed algorithm.
3

Implementation of A Swing System Based on Fuzzy Control

Si Tou, Tat-seng 11 August 2011 (has links)
none
4

Design and Control of Two Under-Actuated Upper Body Exoskeletons for Augmenting Human Capabilities in Lifting

Sreehari, Seetharam Krishnapuram 19 March 2024 (has links)
Exoskeletons are getting popular day by day due to their abilities in helping people. Exoskeletons can be used to help people gain motor senses through rehabilitation. It can also help healthy people to augment their abilities. These exoskeletons need to be strong yet light, so that the human body can support the exoskeleton, while the exoskeleton can support the activity that is being performed. This calls for under-actuated systems, which help in avoiding unnecessary mass due to additional actuators, while providing the same movement capabilities. This thesis describes in detail about two such under-actuated upper body exoskeletons which can be used for lifting loads. The design of such exoskeletons and novel control techniques for comfortable usage is discussed in detail. / Master of Science / Exoskeletons are assistive devices which can help people in several ways. An exoskeleton can help people who are affected with stroke by enabling them to walk through rehabilitation and physiotherapy. It can also help people to perform beyond their capacity in terms of physical activities. This could be to lift more load than possible, run faster than usual. This thesis describes the design and working two such exoskeletons which can be attached to the upper body. These exoskeletons can be used by people to lift loads which would require a lot of effort and muscle activity. The addition of these exoskeletons potentially reduce the muscle activity on the user and helps avoiding injuries in long term. Such exoskeletons have to be light weight so that they do not defeat the purpose of reducing muscle activity. This problem is solved by using under-actuated systems, because a significant mass of the exoskeleton is taken by the actuators such as the motors. Using under-actuated systems help in lowering the mass of the exoskeleton, while still being able to perform the same kinds of motion. This thesis also talks about how these exoskeletons can be controlled such that the load is being lifted with minimal efforts, and being aware of the loads it is lifting to provide the correct amount of torque, above or below which can lead to the motor shooting up or down causing muscular discomfort and injuries in the arm.
5

Towards a Stable Three-Legged Under-Actuated Robotic Platform

Webb, Jacob Daniel 12 February 2015 (has links)
The work seeks toward further developing a novel robotic platform capable of stable three legged locomotion. This will be accomplished by creating a robust and adaptable robotic platform capable of executing different walking strategies and taking multiple continuous steps. Previous iterations of this platform have been developed, all of which have used a single gait strategy. This study will seek to develop two new strategies. The first of which is a modification of the original strategy with theoretically improved gate robustness. A second strategy will seek to implement more advanced control techniques to create a fully stable balanced gait. / Master of Science
6

Contributions to Motion Planning and Orbital Stabilization : Case studies: Furuta Pendulum swing up, Inertia Wheel oscillations and Biped Robot walking

Miranda La Hera, Pedro Xavier January 2008 (has links)
<p>Generating and stabilizing periodic motions in nonlinear systems is a challenging task. In the control system community this topic is also known as limit cycle control. In recent years a framework known as Virtual Holonomic Constraints (VHC) has been developed as one of the solutions to this problem. The aim of this thesis is to give an insight into this approach and its practical application.</p><p>The contribution of this work is primarily the experimental validation of the theory. A step by step procedure of this methodology is given for motion planning, as well as for controller design. Three particular setups were chosen for experiments: the inertia wheel pendulum, the Furuta pendulum and the two-link planar pendulum. These under-actuated mechanical systems are well known benchmarking setups for testing advanced control design methods.</p><p>Further application is intended for cases such as biped robot walking/running, human and animal locomotion analysis, etc.</p>
7

Virtual Holonomic Constraints: from academic to industrial applications

Ortiz Morales, Daniel January 2015 (has links)
Whether it is a car, a mobile phone, or a computer, we are noticing how automation and production with robots plays an important role in the industry of our modern world. We find it in factories, manufacturing products, automotive cruise control, construction equipment, autopilot on airplanes, and countless other industrial applications.         Automation technology can vary greatly depending on the field of application. On one end, we have systems that are operated by the user and rely fully on human ability. Examples of these are heavy-mobile equipment, remote controlled systems, helicopters, and many more. On the other end, we have autonomous systems that are able to make algorithmic decisions independently of the user.         Society has always envisioned robots with the full capabilities of humans. However, we should envision applications that will help us increase productivity and improve our quality of life through human-robot collaboration. The questions we should be asking are: “What tasks should be automated?'', and “How can we combine the best of both humans and automation?”. This thinking leads to the idea of developing systems with some level of autonomy, where the intelligence is shared between the user and the system. Reasonably, the computerized intelligence and decision making would be designed according to mathematical algorithms and control rules.         This thesis considers these topics and shows the importance of fundamental mathematics and control design to develop automated systems that can execute desired tasks. All of this work is based on some of the most modern concepts in the subjects of robotics and control, which are synthesized by a method known as the Virtual Holonomic Constraints Approach. This method has been useful to tackle some of the most complex problems of nonlinear control, and has enabled the possibility to approach challenging academic and industrial problems. This thesis shows concepts of system modeling, control design, motion analysis, motion planning, and many other interesting subjects, which can be treated effectively through analytical methods. The use of mathematical approaches allows performing computer simulations that also lead to direct practical implementations.
8

Contributions to motion planning and orbital stabilization : case studies: Furuta pendulum swing up, inertia wheel oscillations and biped robot walking

Miranda La Hera, Pedro Xavier January 2008 (has links)
Generating and stabilizing periodic motions in nonlinear systems is a challenging task. In the control system community this topic is also known as limit cycle control. In recent years a framework known as Virtual Holonomic Constraints (VHC) has been developed as one of the solutions to this problem. The aim of this thesis is to give an insight into this approach and its practical application. The contribution of this work is primarily the experimental validation of the theory. A step by step procedure of this methodology is given for motion planning, as well as for controller design. Three particular setups were chosen for experiments: the inertia wheel pendulum, the Furuta pendulum and the two-link planar pendulum. These under-actuated mechanical systems are well known benchmarking setups for testing advanced control design methods. Further application is intended for cases such as biped robot walking/running, human and animal locomotion analysis, etc.
9

Haptic-Enabled Robotic Arms to Achieve Handshakes in the Metaverse

Mohd Faisal, 26 September 2022 (has links)
Humans are social by nature, and the physical distancing due to COVID has converted many of our daily interactions into virtual ones. Among the negative consequences of this, we find the lack of an element that is essential to humans' well-being, which is the physical touch. With more interactions shifting towards the digital world of the metaverse, we want to provide individuals with the means to include the physical touch in their interactions. We explore the Digital Twin technology's prospect to support in reducing the impact of this on humans. We provide a definition of the concept of Robo Twin and explain its role in mediating human interactions. Besides, we survey research works related to Digital Twin's physical representation with a focus on under-actuated Digital Twin's robotic arms. In this thesis, we first provide findings from the literature, to support researchers' decisions in the adoption and use of designs and implementations of Digital Twin's robotic arms, and to inform future research on current challenges and gaps in existing research works. Subsequently, we design and implement two right-handed under-actuated Digital Twin's robotic arms to mediate the physical interaction between two individuals by allowing them to perform a handshake while they are physically distanced. This experiment served as a proof of concept for our proposed idea of Robo Twin. The findings are very promising as our evaluation shows that the participants are highly interested in using our system to make a handshake with their loved ones when they are physically separated. With this Robo Twin Arm system, we also find a correlation between the handshake characteristics and gender and/or personality traits of the participants from the quantitative handshake data collected during the experiment. Moreover, it is a step towards the design and development of Digital Twin's under-actuated robotic arms and ways to enhance the overall user experience with such a system.
10

Formation control for a group of underactuated vehicles / Commande de vol en formation d'une flotte de véhicules sous-actionnés

Nguyen, Dang Hao 07 December 2015 (has links)
Le contrôle de vol en formation se rapporte au contrôle de la trajectoire de plusieurs véhicules pour accomplir une tâche commune. La motivation du contrôle du vol en formation réside dans le fait que l'utilisation de plusieurs drones permet de réaliser des tâches plus complexes et que ne peut accomplir un drone unique. Les stratégies de commande de flotte de véhicules peuvent être classées en trois groupes principaux : la stratégie de vol type meneur-suiveur, celle basée sur comportement et l'approche utilisant un meneur virtuel. Chaque groupe se compose de différents véhicules et on suppose que les véhicules communiquent entre eux pour échanger des informations. Le contrôle de position pour des quadrirotors sous-actionnés ou des UAV VTOL a retenu l'intérêt de plusieurs chercheurs de la communauté scientifique. En raison de la nature sous-actionnée des UAV VTOL, l'attitude du système doit être utilisée afin de commander la position et la vitesse. En effet, la prise en compte des perturbations externes, des incertitudes sur la dynamique du système ainsi que l'objectif d'obtenir des résultats globaux rendent la synthèse de lois de commande plus difficile. Nous proposons, dans ce travail, un algorithme permettant l'extraction de l'attitude et une nouvelle formulation de la poussée pour la commande d'un drone. Cet algorithme utilise cette formulation de la force de poussée pour atteindre les objectifs en translation et utilise le vecteur quaternion unitaire comme consigne du sous-système en rotation. Cet algorithme est ensuite étendu au cas de la commande de vol en formation. Cinq contrôleurs de vol en formation sont développés et séparés dans deux groupes : l'approche structure virtuelle et l'approche meneur-suiveur. Les trois premiers contrôleurs de vol en formation utilisent l'approche structure virtuelle. La vitesse, les perturbations et les incertitudes de modèle dans la dynamique sont estimées par le biais d'un observateur et la technique de commande "backstepping" adaptative. La synthèse des deux derniers contrôleurs de vol en formation de vol est obtenue en utilisant l'approche meneur-suiveur. La formation utilisant cette approche pour des quadrirotors et pour le système du second degré est construite. Le changement de la configuration de la formation de vol est également simulé pour ces deux derniers contrôleurs de vol en formation. Dans chacun des cinq contrôleurs de vol en formation, la fonction d'évitement de collision construite à partir d'une fonction indicielle "lisse" est incluse. Cette fonction produit une force de poussée quand un quadrirotor évolue près des autres et d'une force de traction quand un quadrirotor évolue hors de la zone de détection. Les résultats de simulation prouvent que cette fonction d'évitement de collision fonctionne tout à fait correctement et qu'aucune collision entre les quadrirotors ni avec les obstacles ne se produit. En résumé, l'utilisation de la poussée, de l'algorithme d'extraction d'attitude et de la fonction d'évitement de collision, rend la synthèse des lois de commande plus facile et les résultats obtenus pour le vol en formation sont globaux / Formation control relates with the motion control of multiple vehicles to accomplish a common task. The motivation of formation control is because of the advantages achieved by using a formation of vehicles instead of a single one. Cooperative control approach can be cataloged into three main groups: leader-follower, behavior-based and virtual structure. Each group consists of individual vehicles and the communication allows the information be exchanged among vehicles. Position control for under-actuated quadrotors or VTOL UAVs has been focused in several group in the research community. Due to the under-actuated nature of VTOL UAVs, the system attitude must be used in order to control the position and velocity of the system. Moreover, the effect of external disturbance, uncertainty of the dynamics and the requirement of achieving the global results make the control design process more difficult. Developing from a global controller for a single quadrotor, a new thrust and attitude extraction algorithm is proposed. This algorithm allows transferring an intermediate control force to a thrust force to achieve the translational objective and an unit quaternion vector as a reference for the rotational subsystem. This algorithm is also embedded in the formation controller. Five formation controllers are developed and separated into two groups, virtual structure and leader-follower approach. The first three formation controllers are constructed by using the virtual structure approach. The unmeasured linear velocity, disturbance and uncertainty in the dynamics are solved by employing observer design and adaptive backstepping control design technique. The last two formation controllers are built by using the leader-follower approach. The leader follower formation for quadrotors and for second order system are constructed. The changing of formation shape in working time also is simulated in these last two formation controllers. In all five formation controllers, collision avoidance function constructed from a smooth step function is embedded. This function generates a pushing force when a quadrotor goes close to the others and a pulling force when a quadrotor travels out of the sensing range. The simulation results show that this collision avoidance function works quite effectively and there is no collision among quadrotors and obstacles. It can be summarized that by using the thrust and attitude extraction algorithm and the collision avoidance function, the control design process becomes easier and all the formation controllers achieve the global results

Page generated in 0.8663 seconds