• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trajectory-Tracking Control of the Ball-and-Plate System

Riccoboni, Dominic E 01 March 2023 (has links) (PDF)
The Mechatronics group in the Mechanical Engineering department of Cal Poly is interested in creating a demonstration of a ball-and-plate trajectory tracking controller on hardware. The display piece will serve to inspire engineering students to pursue Mechatronics and control theory as an area of study. The ball-and-plate system is open-loop unstable, underactuated, and has complicated, nonlinear equations of motion. These features present substantial challenges for control - especially if the objective is trajectory tracking. Because the system is underactuated, common nonlinear trajectory tracking control techniques are ineffective. This thesis lays out a theoretical foundation for controlling the hardware. Several important concepts related to ball-and-plate trajectory tracking control are presented. Models of the system, with various assumptions, are given and used in deriving control law candidates. To limit project scope, reasonable control criteria are introduced and used to evaluate designs from the thesis. Several control architectures are explored, these being Full-State Feedback with Integral Action, Single-Input-Single-Output Sliding Mode, and Full-State Feedback with Feed Forward. The mathematical reasoning behind each is detailed, simulation results are shown to validate their practicality and demonstrate features of the architectures, and trajectory similarity measure studies are produced to evaluate controller performance for a wide range of setpoint functions. The Full-State Feedback with Feed Forward controller is recommended based on its theoretical advantages and compliance with the control criteria over the competing designs. The control architecture has a proof of asymptotic tracking in the linear model, has excellent performance in simulations that use a nonlinear plant model, and produces the most pleasing visual experience when viewed in animation.
2

Adaptive, Anthropomorphic Robot Hands for Grasping and In-Hand Manipulation

Kontoudis, Georgios Pantelis 01 February 2019 (has links)
This thesis presents the design, modeling, and development of adaptive robot hands that are capable of performing dexterous, in-hand manipulation. The robot hand comprises of anthropomorphic robotic fingers, which employ an adaptive actuation mechanism. The mechanism achieves both flexion/extension and adduction/abduction, on the finger's metacarpophalangeal joint, by using two actuators. Moment arm pulleys are employed to drive the tendon laterally, such that an amplification on the abduction motion occurs, while also maintaining the flexion motion. Particular emphasis has been given to the modeling and the analysis of the actuation mechanism. Also, a model for spatial motion is provided that relates the actuation modes with the finger motion and the tendon force with the finger characteristics. For the hand design, the use of differential mechanisms simplifies the actuation scheme, as we utilize only two actuators for four fingers, achieving affordable dexterity. A design optimization framework assess the results of hand anthropometry studies to derive key parameters for the bio-inspired actuation design. The model assumptions are evaluated with the finite element method. The proposed finger has been fabricated with the Hybrid Deposition Manufacturing technique and the actuation mechanism's efficiency has been validated with experiments that include the computation of the finger workspace, the assessment of the force exertion capabilities, the demonstration of the feasible motions, and the grasping and manipulation capabilities. Also, the hand design is fabricated with off-the-shelf materials and rapid prototyping techniques while its efficiency has been validated using an extensive set of experimental paradigms that involved the execution of grasping and in-hand manipulation tasks with everyday objects. / Master of Science / This thesis presents the design, modeling, and development of adaptive robot hands that are capable of performing selective interdigitation, robust grasping, and dexterous, in-hand manipulation. The robotic fingers employ an adaptive actuation mechanism. The design is minimal and the hand is capable of performing selective interdigitation, robust grasping, and dexterous, in-hand manipulation. Particular emphasis has been given to the modeling and the analysis of the actuation mechanism. For the hand design, the use of differential mechanisms simplifies the actuation scheme, as we utilize only two actuators for four fingers, achieving affordable dexterity. A design optimization framework assess the results of hand anthropometry studies to derive key parameters for the actuation design. The robotic fingers and the anthropomorphic hand were fabricated using off-the-self materials and additive manufacturing techniques. Several experiments were performed to validate the efficacy of the robot hand.
3

Stabilité Posturale d’un Exosquelette Actif de Jambes / Postural Stability of a Powered Leg Exoskeleton

Huynh, Vaiyee 23 November 2017 (has links)
Quel que soit le type d'exosquelettes de jambes, la question d’équilibre du système est très importante, puisqu'il s'agit de robots physiquement attachés à l'utilisateur. Dans le but de respecter au maximum la volonté de l'utilisateur ainsi que ses mouvements, cette thèse a pour objectif de développer des stratégies de commande de gestion d'équilibre pour un exosquelette d’assistance. Il s'agit alors d'assister l'équilibre du système couplé (utilisateur valide + exosquelette), en gérant l'équilibre de l'exosquelette soumis à l'action de l'utilisateur. La commande de gestion d'équilibre proposée s'inspire des commandes développées par le CEA-LIST sur les exosquelettes Hercule et des stratégies de récupération d'équilibre observées chez l'humain. Elle est essentiellement basée sur le concept du point de capture instantané. En effet,le point de capture instantané est un bon outil qui englobe aussi bien le cas statique que le cas dynamique et surtout, qui contient une information sur la direction de mouvement, ce qui nous permet d'anticiper certaines actions comme l'action de faire un pas. Les contributions de cette thèse sont alors :• l'application d'une commande du point de capture à un exosquelette d'assistance ;• la proposition d'une nouvelle répartition des efforts sur les deux jambes de l'exosquelette permettant d'anticiper les perturbations et le pas ;• la gestion du sous-actionnement (toutes les articulations ne sont pas motorisées) en phase de double support via un calcul d'optimisation qui a pour objectif de suivre la répartition des efforts désirée et de maîtriser les forces d'interaction entre l'utilisateur et l'exosquelette. / The postural stability of leg exoskeletons, no matter their purposes (medical, military or civil), is a real issue since the user is fastened to them. Indeed, in order to respect the will of the user and his movements to the maximum, we have to study the system balance. Therefore, the purpose of this thesis is to develop balance strategies for a leg exoskeleton designed for industrial applications such as static work. It is about assisting the balance of the coupled system (user +exoskeleton) by dealing with the exoskeleton’s balance subjected to the user’s action. We present a balance control which is inspired by control methods developed by CEA-LIST for the Hercule exoskeleton, as well as by human balance strategies. It is mainly based on the instantaneous capture point concept. The first contribution of this thesis is the application of a classical instantaneous capture point control to a leg exoskeleton that assists a user. The user’s intention is first detected through the position of the instantaneous capture point and the assistance provided by the exoskeleton differs. The second contribution focuses on how we candistribute the effort to the legs. The experience of the «Master-Slave » control of CEA-LIST showed that the main difficulty, for a user, is to handle the weight transfer in order to take the swing leg off and make a step. We suggest a newleg distribution, that is able to anticipate a step. The last contribution is related to the underactuation of the exoskeleton in the double support phase. We propose an optimization algorithm that aims at following the leg distribution, and at managing the interaction forces between the user and the exoskeleton.
4

Commande non linéaire en présence de modes souples, applications aérospatiales / Nonlinear control with flexible modes, aerospace applications

Duraffourg, Elodie 11 December 2014 (has links)
En aérospatial, les contraintes de masse ont conduit à utiliser des structures plus légères et par conséquent plus souples, induisant de nouveaux objectifs de commande, comme la réduction des efforts structuraux. Pour satisfaire ces objectifs, les modes de flexion doivent être considérés dès la synthèse de la loi de commande, ce qui entraîne certaines contraintes comme les non linéarités, le sous actionnement et l’altération des mesures par les modes souples. En considérant ces contraintes, cette thèse traite de la synthèse d’une méthode de commande non linéaire pour les systèmes aérospatiaux souples. Nous nous intéressons particulièrement au problème d’atténuation des oscillations provoquées par les modes souples. Pour cela, nous définissons une classe de système non linéaire, sous actionnée et à minimum de phase, représentative des systèmes aérospatiaux souples. Pour cette classe de système, nous proposons une loi de commande non linéaire synthétisée par retour d’état en utilisant des changements de variables et la technique du backstepping. La synthèse est effectuée de façon à améliorer le régime transitoire des modes souples. Les états souples n’étant pas mesurés, le problème du retour de sortie est également traité par l’intermédiaire d’observateurs adaptatifs (à temps fini et asymptotique). Des incertitudes sur la pulsation et l’amortissement des modes souples sont en particulier considérées. La méthode proposée est illustrée par des simulations numériques réalisées sur un lanceur et un avion hypersonique. / Due to mass constraints aerospace systems tend to have lightweight and flexible structures leading to new control objectives such as structural load reduction. To fulfil these objectives, flexible modes must be considered from the design of the controller, requiring to consider some constraints such as nonlinearities, underactuation, or measurement corruption terms. Consider these constraints, this thesis treats the design of a nonlinear control method for flexible aerospace systems. We particularly focus on the problem of reducing oscillations caused by the bending modes. To do that, we define a class of nonlinear system which is both underactuated and minimum phase and that represents flexible aerospace systems. Consider this class, we propose a nonlinear full-state controller based on changes of coordinates and the backstepping technique. The control design is carried out to enhance the transient of the flexible modes. Flexiblestates being not measured, the output-feedback problem is also treated through adaptive observers (finite-time and asymptotic). Uncertainties of natural damping and frequency of the bending modes are particularly considered. The proposed method is illustrated by numerical simulations performed on a space launch vehicle and an hypersonic aircraft.
5

Material and mechanical emulation of the human hand

Hockings, Nicholas January 2017 (has links)
The hands and feet account for half of the complexity of the musculoskeletal system, while the skin of the hand is specialised with many important structures. Much of the subtlety of the mechanism of the hand lies in the soft tissues, and the tactile and proprioceptive sensitivity depends on the large number of mechanoreceptors embedded in specific structures of the soft tissues. This thesis investigates synthetic materials and manufacturing techniques to enable building robots that reproduce the biomechanics and tactile sensitivity of vertebrates – histomimetic robotics. The material and mechanical anatomy of the hand is reviewed, highlighting difficulty of numerical measurement in soft-tissue anatomy, and the predictive nature of descriptive anatomical knowledge. The biomechanical mechanisms of the hand and their support of sensorimotor control are presented. A palate of materials and layup techniques are identified for emulating ligaments, joint surfaces, tendon networks, sheaths, soft matrices, and dermal structures. A method for thermoplastically drawing fine elastic fibres, with liquid metal amalgam cores, for connecting embedded sensors is demonstrated. The performance requirements of skeletal muscles are identified. Two classes of muscle-like bulk MEMS electrostatic actuators are shown theoretically to be capable of meeting these requirements. Means to manufacture them, and their additional application as mechanoreceptors are described. A novel machine perception algorithm is outlined as a solution to the problem of measuring soft tissue anatomy, CAD/CAE/CNC for layup of histomimetic robots, and sensory perception by such robots. The results of the work support the view that histomimetic robotics is a viable approach, and identify a number of areas for further investigation including: polymer modification by graft-polymerisation, automated layup tools, and machine perception.

Page generated in 0.1078 seconds