Spelling suggestions: "subject:"underground storage banks"" "subject:"underground storage ranks""
1 |
The impact of reservoir properties on mixing of inert cushion and natural gas in storage reservoirsSrinivasan, Balaji S. January 2006 (has links)
Thesis (M.S.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains vii, 88 p. : ill. (some col.), map (part col.). Includes abstract. Includes bibliographical references (p. 47-49).
|
2 |
Impact of injecting inert cushion gas into a gas storage reservoirLekkala, Sudheer R. January 2009 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains vii, 40 p. : col. ill. Includes abstract. Includes bibliographical references (p. 39-40).
|
3 |
Petroleum cleanup in the United States: A historical review and comparison of state programsTerwilliger, Timothy A 01 June 2006 (has links)
Cleanup of leaking underground storage tank (LUST) sites has been a priority for the United States of America (USA) for more than 20 years due to the large number of sites, the potential harmful health affects associated with gasoline components and the fact that single owners may not have the ability to pay for cleanup of these sites. In June 2006, the US Environmental Protection Agency (EPA) reported that of the 459,637 confirmed releases from USTs that had occurred previously, 342,688 had been remediated, which leaves 116,949 sites yet to be completed across the USA. Petroleum cleanup programs tend to be managed at the State level; however, there are wide variations among State programs in terms of information access, risk perception and funding availability.
While each of the Federal and State UST programs has evolved to meet specific requirements, there has not been a comprehensive comparison of the individual State programs.In this thesis, State petroleum cleanup programs across the USA are evaluated to determine similarities and differences in an effort to identify factors that affect petroleum cleanup progress. Many parameters enter the equation in determining petroleum cleanup effectiveness. Not only are the parameters of the State program operation important, but also the characteristics of each State, including drinking water source and perceived risk associated with petroleum contamination, factor into the determination.A representative group of States and State petroleum cleanup programs were evaluated and the characteristics of States were compared to cleanup progress to determine factors affecting efficiency.
Based on trend analysis the cleanup levels for toluene, ethylbenzene and total xylenes correlate directly to the cost of LUST site cleanup. For States with less perceived risk from petroleum contamination, the cleanup goals are less stringent; therefore, fewer resources and less time are required to complete site cleanup. Consequently, petroleum cleanup in States with less-stringent goals is achieved more efficiently. The knowledge of these drivers of efficient petroleum cleanup can be used to expeditiously pursue completion of the thousands of sites remaining across the USA.
|
4 |
Hydrogeologic conditions controlling contaminant migration from storage tanks overlying Mississippi River Alluvium a case study /Santucci, Jay N. January 2006 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Geosciences. / Title from title screen. Includes bibliographical references.
|
5 |
Petroleum Releases from Underground Storage Tanks in Northwest Indiana: Successful Remediation Techniques and Implications of Cost EffectivenessLenz, Richard Jason 13 December 2014 (has links)
Prior to the passage of the 1976 Resource Conservation and Recovery Act (RCRA) 1.6 million bare steel Underground Storage Tanks (UST) were in use in the United States. Many of them were leaking. In Indiana approximately 13,000 UST remain but have been upgraded to meet current industry and regulatory standards. Cleaning up the petroleum releases from leaking UST has continued since it became evident that bare steel underground tanks leaked. In Northwest Indiana glacial moraine and outwash deposits from the Wisconsin Ice Age that retreated 10,000 years ago left 200 feet of glacial till above the underlying bedrock. Soil Vapor Extraction (SVE) and Air Sparging (AS) have proven to be effective and provide significant cost savings for remediation in the glacial deposits in Northwest Indiana. Indiana also has the Excess Liability Trust Fund (ELTF) to help pay for and to expedite clean-up of releases from registered UST. Cleaning up petroleum releases requires the appropriate technology for the localized geology, adequate funding, and appropriate guidance from state and federal regulations. This study discusses these issues at three sites in Northwest Indiana to demonstrate how technology, funding, and regulatory compliance must collaborate to work in the field.
|
6 |
An investigation into factors increasing contamination risk posed by fuel storage facilities and concomitant methods to mitigate these risks.Pfotenhauer, Torin. 23 September 2013 (has links)
Light Non-Aqueous Phase Liquids (LNAPLs) are used throughout the world for numerous applications,
the most well-known being automotive fuels, such as petrol and diesel. The widespread production,
distribution, storage and use of LNAPLs results in the ubiquitous occurrence of spillage to ground (Geller
et al, 2000). Considering the hazardous nature of most LNAPLs due to their explosive and toxic
characteristics, releases of LNAPLs to ground have well documented human health and ecological
consequences.
The occurrence of leaking underground and above-ground storage tanks at service stations and consumer
installations is a common cause of contamination; and is described in literature for various countries of
the world (Dietz et. al., 1986; Moschini et al, 2005; Mulroy and Ou, 1997; Harris, 1989; The Institute of
Petroleum, 2002).
Little failure data are however available for the South African context. In addition to this, data
concerning the location and characteristics of sites storing LNAPLs in South Africa is similarly scarce.
The study analysed data from three sources, namely the eThekwini Fire and Emergency Services data,
GIS data and data from a local consultancy, in order to determine whether certain factors increased
contamination risk posed by these facilities. The results indicated that contamination may be a result of
numerous factors, but primarily line and tank failure. The type of installation was also found to have a
significant influence on whether a site would be contaminated or not.
In addition to the above, the results indicated that certain circumstances increase the severity of loss.
The results indicated the need for more investigation to be performed into contamination as a result of
LNAPL loss to ground, and the need for protective measures to be implemented for high risk sites where
the likelihood and severity of a potential loss is high. Focus should then be centred on the probability of
failure of non-ferrous pipework and GRP tanks to ensure adequate protective mechanisms are in place in
the event of a failure of this newer infrastructure.
In addition, a review of regulatory control of LNAPL storage in South Africa and the eThekwini
Municipality, with reference to the international context, indicated the need for a specific department
within the local government structure that manages LNAPLs with the objective of reducing
contamination incidents.
The continued use of underground storage of LNAPLs will always present a risk of failure/contamination
due to the unseen nature of the installations and related infrastructure. It is this risk that requires
regulatory management. Details of contaminated sites in South Africa should be within the public
domain. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
|
Page generated in 0.0561 seconds