Spelling suggestions: "subject:"underwater acoustic -- evaluatuation"" "subject:"underwater acoustic -- evalualuation""
1 |
Underwater acoustic channel estimation using multiple sources and receivers in shallow waters at very-high frequenciesUnknown Date (has links)
The underwater channel poses numerous challenges for acoustic communication.
Acoustic waves suffer long propagation delay, multipath, fading, and potentially
high spatial and temporal variability. In addition, there is no typical underwater
acoustic channel; every body of water exhibits quantifiably different properties. Underwater
acoustic modems are traditionally operated at low frequencies. However, the
use of broadband, high frequency communication is a good alternative because of the
lower background noise compared to low-frequencies, considerably larger bandwidth
and better source transducer efficiency. One of the biggest problems in the underwater
acoustic communications at high frequencies is time-selective fading, resulting
in the Doppler spread. While many Doppler detection, estimation and compensation
techniques can be found in literature, the applications are limited to systems operating
at low frequencies contained within frequencies ranging from a few hundred Hertz
to around 30 kHz. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
2 |
Combined spatial diversity and time equalization for broadband multiple channel underwater acoustic communicationsUnknown Date (has links)
High data rate acoustic communications become feasible with the use of communication systems that operate at high frequency. The high frequency acoustic transmission in shallow water endures severe distortion as a result of the extensive intersymbol interference and Doppler shift, caused by the time variable multipath nature of the channel. In this research a Single Input Multiple Output (SIMO) acoustic communication system is developed to improve the reliability of the high data rate communications at short range in the shallow water acoustic channel. The proposed SIMO communication system operates at very high frequency and combines spatial diversity and decision feedback equalizer in a multilevel adaptive configuration. The first configuration performs selective combining on the equalized signals from multiple receivers and generates quality feedback parameter for the next level of combining. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
Page generated in 0.1245 seconds