• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 14
  • 14
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimisation of parametric equations for shock transmission through surface ships from underwater explosions

Elder, David James, d.elder@crc-acs.com.au January 2006 (has links)
Currently shock effects on surface ships can be determined by full scale shock trials, Finite Element Analysis or semi empirical methods that reduce the analytical problem to a limited number of degrees of freedom and include hull configurations, construction methods and materials in an empirical way to determine any debilitating effects that an explosion may have on the ship. This research has been undertaken to better understand the effect of hull shape on surface ships' shock response to external underwater explosions (UNDEX). The study is within the semi empirical method category of computations. A set of simple closed-form equations has been developed that accurately predicts the magnitude of dynamic excitation of different 2- D rigid-hull shapes subject to far-field UNDEX events. This research was primarily focused on the affects of 2-D rigid hull shapes and their contribution to global ship motions. A section of the thesis,
12

Evaluation and analysis of DDG-81 simulated athwartship shock response

Petrusa, Douglas C. 06 1900 (has links)
Approved for public release; distribution is unlimited / In 2001 the USS WINSTON CHURCHILL (DDG-81) was subjected to three underwater explosions as part of a ship shock trial. Using the actual trial data from experiment and three-dimensional dynamic models of the ship and surrounding fluid very successful comparisons of the vertical motion have been achieved. On average, the magnitude of the vertical motion is three to four times the magnitude of athwartship motion. Previous simulations of this athwartship motion have been less accurate than the vertical motion simulations. This thesis examines recent efforts attempted to improve the simulation results of the athwartship motion including shock spectra analysis, and the reasons behind the disparities that exist between the simulated values and the actual trial data. / Lieutenant, United States Coast Guard
13

Parametric studies of DDG-81 ship shock trial simulations

Didoszak, Jarema M. 03 1900 (has links)
Approved for public release, distribution is unlimited / Evaluations, otherwise known as ship shock trials, have been conducted in order to determine the seaworthiness of each new class of ship commissioned in the U.S. Fleet. While beneficial in determining the overall survivability of a ship and its mission essential equipment in a severe shock environment, these Navy-mandated tests pose serious danger to the crew, ship and environment. As an alternative to these labor intensive, costly and time consuming at-sea tests, the recent advances in computer processing power have made it possible to employ finite element methods involving complex geometries in the modeling and simulation of shock response for the ship and surrounding fluid. This thesis examines the accuracy of shock simulation predictions as compared to the ship shock trials conducted on USS WINSTON S. CHURCHILL (DDG-81). An investigation of the effects of sensor location, damping and shot geometry is presented as validation of the Naval Postgraduate School modeling and simulation methodology. / Lieutenant, United States Navy
14

Experimental and numerical analyses of dynamic deformation and failure in marine structures subjected to underwater impulsive loads

Avachat, Siddharth 16 July 2012 (has links)
The need to protect marine structures from the high-intensity impulsive loads created by underwater explosions has stimulated renewed interest in the mechanical response of sandwich structures. The objective of this combined numerical and experimental study is to analyze the dynamic response of composite sandwich structures and develop material-structure-property relations and design criteria for improving the blast-resistance of marine structures. Configurations analyzed include polymer foam core structures with planar geometries. A novel experimental facility to generate high-intensity underwater impulsive loads and carry out in-situ measurements of dynamic deformations in marine structures is developed. Experiments are supported by fully dynamic finite-element simulations which account for the effects of fluid-structure interaction, and the constitutive and damage response of E-glass/polyester composites and PVC foams. Results indicate that the core-density has a significant influence on dynamic deformations and failure modes. Polymeric foams experience considerable rate-effects and exhibit extensive shear cracking and collapse under high-magnitude multi-axial underwater impulsive loads. In structures with identical masses, low-density foam cores consistently outperform high-density foam cores, undergoing lesser deflections and transmitting smaller impulses. Calculations reveal a significant difference between the response of air-backed and water-backed structures. Water-backed structures undergo much greater damage and consequently need to absorb a much larger amount of energy than air-backed structures. The impulses transmitted through water-backed structures have significant implications for structural design. The thickness of the facesheets is varied under the conditions of constant material properties and core dimensions. The results reveal an optimal thickness of the facesheets which maximizes energy absorption in the core and minimizes the overall deflection of the structure.

Page generated in 0.2626 seconds