• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE ANALYSIS OF UNEQUALLY SPACED TIME SERIES

ZHANG, SHIQIAO 04 April 2007 (has links)
No description available.
2

Adaptive Fourier Analysis For Unequally-Spaced Time Series Data

Liang, Hong 22 May 2002 (has links)
Fourier analysis, Walsh-Fourier analysis, and wavelet analysis have often been used in time series analysis. Fourier analysis can be used to detect periodic components that have sinusoidal shape; however, it might be misleading when the periodic components are not sinusoidal. Walsh-Fourier analysis is suitable for revealing the rectangular trends of time series. The flaw of the Walsh-Fourier analysis is that Walsh functions are not periodic. The resulting Walsh-Fourier analysis is more difficult to interpret than classical Fourier analysis. Wavelet analysis is very useful in analyzing and describing time series with gradual frequency changes. Wavelet analysis also has a shortcoming by giving no exact meaning to the concept of frequency because wavelets are not periodic functions. In addition, all three analysis methods above require equally-spaced time series observations. In this dissertation, by using a sequence of periodic step functions, a new analysis method, adaptive Fourier analysis, and its theory are developed. These can be applied to time series data where patterns may take general periodic shapes that include sinusoids as special cases. Most importantly, the resulting adaptive Fourier analysis does not require equally-spaced time series observations. / Ph. D.
3

The impact of parsing methods on recurrent neural networks applied to event-based vehicular signal data / Påverkan av parsningsmetoder på återkommande neuronnät applicerade på händelsebaserad signaldata från fordon

Max, Lindblad January 2018 (has links)
This thesis examines two different approaches to parsing event-based vehicular signal data to produce input to a neural network prediction model: event parsing, where the data is kept unevenly spaced over the temporal domain, and slice parsing, where the data is made to be evenly spaced over the temporal domain instead. The dataset used as a basis for these experiments consists of a number of vehicular signal logs taken at Scania AB. Comparisons between the parsing methods have been made by first training long short-term memory (LSTM) recurrent neural networks (RNN) on each of the parsed datasets and then measuring the output error and resource costs of each such model after having validated them on a number of shared validation sets. The results from these tests clearly show that slice parsing compares favourably to event parsing. / Denna avhandling jämför två olika tillvägagångssätt vad gäller parsningen av händelsebaserad signaldata från fordon för att producera indata till en förutsägelsemodell i form av ett neuronnät, nämligen händelseparsning, där datan förblir ojämnt fördelad över tidsdomänen, och skivparsning, där datan är omgjord till att istället vara jämnt fördelad över tidsdomänen. Det dataset som används för dessa experiment är ett antal signalloggar från fordon som kommer från Scania. Jämförelser mellan parsningsmetoderna gjordes genom att först träna ett lång korttidsminne (LSTM) återkommande neuronnät (RNN) på vardera av de skapade dataseten för att sedan mäta utmatningsfelet och resurskostnader för varje modell efter att de validerats på en delad uppsättning av valideringsdata. Resultaten från dessa tester visar tydligt på att skivparsning står sig väl mot händelseparsning.

Page generated in 0.0457 seconds