• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow modelling in compound channels

Othman, Faridah January 2000 (has links)
No description available.
2

A study of water turbine power efficiency suitable for periodical ocean current in Penghu sea region

Lin, Chang-ching 06 September 2010 (has links)
This thesis investigates a horizontal water turbine blade designed to suit the periodical ocean current in Penghu sea region. Blade element momentum theory is exploited to design blade profiles. Then, CFD software, Fluent, is used to obtain such simulation result for torque, power, and efficiency. Firstly, performance of turbines with various cross-sectional profiles is discussed. Then, we use quasi-steady method to simulate power output of turbines from periodical ocean current and estimate how much ocean current energy we can obtain per day. Further, the performance of a turbine installed for different immersed depth from the surface is investigated. Our studies show that airfoil profile NACA6409 can outperform others in terms of high lift/drag ratio under low Reynolds number, and better hydrodynamic properties help the water turbine obtain higher torque and power output. A water turbine designed by using NACA6409, at R=1 m, at uniform velocity=2 m/s is estimated to generate 5KW output power. On condition of periodical current flow, the ebb tidal current can rotate water turbine, but power output is only 0.54 times of flood tidal current. The water turbine can generate more power when it is sited in deeper water, and less torque when it is sited near the water surface.
3

Vibration of Circular Cylinders in Non-Uniform Water Flow

Liu, Chun-nan 10 September 2007 (has links)
The study aims to explore flow-induced vibration of shear flow past a circular cylinder. The major parameters in the experiment are the natural frequency of the cylinder, and the velocity and velocity gradient of the shear flow approaching the cylinder. The vibration of the cylinder in a water tunnel were measured by two accelerometers to simultaneously obtain the vibration amplitudes in both the streamwise and cross-stream directions. The experimental results show that in the shear flow the cylinder tends of vibrate the orbits of the cylinder vibration become in the streamwise direction while in uniform flow the cylinder vibrates in all directions in the X-Y plane the tendency is obvious for the cylinder with high natural frequency (13Hz). The orbits of the cylinder with low natural frequency (9Hz) are basically similar in shear flow and in uniform flow.
4

Uniform Flow Development Length in a Rough Laboratory Flume

Sharma, Sanjib 01 May 2015 (has links)
Test sections in laboratory studies should be fully developed and uniform if they are to be generalized. The objective of this study is to develop a model for predicting the uniform flow development length (Lunif) in a rough laboratory flume as a function of hydraulic parameters and bed particle roughness height (ks). Using an ADV time-averaged point velocity was measured in developing and fully developed turbulent subcritical rough open-channel flows. A series of laboratory tests were carried out in a 6.1-m-long and 0.46-m-wide rectangular channel. Tests were conducted with fine gravel (d50 = 5.8 mm, ks = 3.1d90 = 0.026 m), medium gravel (d50 = 14 mm, ks = 0.068 m), and with fine /medium gravel (d50 = 11 mm, ks = 0.04 m). For each test, longitudinal point velocity measurements were made along the center of the channel at five elevations, and at thirteen longitudinal stations. The study concluded that for flow to be uniform, the flow depth and mean cross-sectional velocity must be constant. In addition, root mean square of the fluctuating component of the velocity, RMS(u'), which is the measure of the turbulence intensity, should be uniform in order for a flow to consider uniform. Thus, RMS(u') is one of the indicative measures for determining the location where the developing flow is fully developed and uniform. The results showed that increasing the bed roughness height decreases the uniform flow development length. Using the dimensional and statistical analyses Lunif was estimated as a linear function of Reynold's particle number and Froude number.
5

Dominant features in three-dimensional turbulence structure: comparison of non-uniform accelerating and decelerating flows

Pu, Jaan H., Tait, Simon J., Guo, Yakun, Huang, Y., Hanmaiahgari, P.R. 06 November 2017 (has links)
Yes / The results are presented from an experimental study to investigate three-dimensional turbulence structure profiles, including turbulence intensity and Reynolds stress, of different non-uniform open channel flows over smooth bed in subcritical flow regime. In the analysis, the uniform flow profiles have been used to compare with those of the non-uniform flows to investigate their time-averaged spatial flow turbulence structure characteristics. The measured non-uniform velocity profiles are used to verify the von Karman constant κ and to estimate sets of log-law integration constant Br and wake parameter П, where their findings are also compared with values from previous studies. From κ, Br and П findings, it has been found that the log-wake law can sufficiently represent the non-uniform flow in its non-modified form, and all κ, Br and П follow universal rules for different bed roughness conditions. The non-uniform flow experiments also show that both the turbulence intensity and Reynolds stress are governed well by exponential pressure gradient parameter β equations. Their exponential constants are described by quadratic functions in the investigated β range. Through this experimental study, it has been observed that the decelerating flow shows higher empirical constants, in both the turbulence intensity and Reynolds stress compared to the accelerating flow. The decelerating flow also has stronger dominance to determine the flow non-uniformity, because it presents higher Reynolds stress profile than uniform flow, whereas the accelerating flow does not. / Major State Basic Research Development Grant No. 2013CB036402.
6

TRIPPING OF THE BOUNDARY LAYER DEVELOPMENT LENGTH OVER ROUGH AND FULLY TURBULENT SUBCRITICAL FLUME

Sapkota, Deependra 01 December 2015 (has links)
The distance required for flow entering a laboratory channel to become fully-developed and uniform can be substantial. Given the need to establish fully-developed uniform flow, if the length of a laboratory channel is not substantial then it likely that the flume cannot be used to conduct open-channel flow research. In laboratory studies where the channel bed is hydraulically rough, the noted problem can be lessened by minimizing the length over which the flow becomes fully-developed and uniform (Lunif). For this study it is hypothesized that if bed material with a roughness height (ks, ∆) is placed at the channel entrance and ks, ∆ is greater has the roughness height of bed material placed throughout the channel (ks, bed) then Lunif can be reduced. The length over which the larger bed material is referred to as the tripping zone length (∆). A second hypothesis for this study is that if ∆ is longer, then Lunif will be shorter. The primary objective of this study is to test the above mentioned hypothesis and to develop a relationship for predicting Lunif as a function of Δ. For this study, physical tests were performed in a rectangular Plexiglas flume with a variable slope. The flume was 6.1 m long, 45.7 cm wide, and 45.7 cm deep. The channel has smooth walls and the bed was lined with gravel (median particle size, d50 = 8.5 mm or 22 mm). Similarly tripping zone was lined with gravel of larger size (median particle size, d50 = 13 mm or 58 mm).Twelve tests were conducted for the study. For each test, longitudinal point velocity measurements (u) were made along the channel center, at five elevations (z), and at twelve longitudinal stations (x). An Acoustic Doppler Velocimeter was used to measure u. Lunif was determined by considering four indications of flow uniformity. Results indicate that having a tripping zone decreases Lunif and the magnitude of the decrease in Lunif was dependent on ∆. A function is presented for predicting Lunif /H = f (Rep, Fr, and Δ/H) where Rep is the Reynold's particle number, Fr is the Froude number and H is the flow depth.
7

Design Optimization of Heat Transfer and Fluidic Devices by Using Additive Manufacturing

Kumar, Nikhil, Kumar, Nikhil January 2016 (has links)
After the development of additive manufacturing technology in the 1980s, it has found use in many applications like aerospace, automotive, marine, machinery, consumer and electronic applications. In recent time, few researchers have worked on the applications of additive manufacturing for heat transfer and fluidic devices. As the world has seen a drastic increase in population in last decades which have put stress on already scarce energy resources, optimization of energy devices which include energy storing devices, heat transfer devices, energy capturing devices etc. is need for the hour. Design of energy devices is often constrained by manufacturing constraints thus current design of energy devices is not an optimized one. In this research we want to conceptualize, design and manufacture optimized heat transfer and fluidic devices by exploiting the advantages provided by additive manufacturing. We want to benefit from the fact that very intricate geometry and desired surface finish can be obtained by using additive manufacturing. Additionally, we want to compare the efficacy of our designed device with conventional devices. Work on usage of Additive manufacturing for increasing efficiency of heat transfer devices can be found in the literature. We want to extend this approach to other heat transfer devices especially tubes with internal flow. By optimizing the design of energy systems we hope to solve current energy shortage and help conserve energy for future generation.We will also extend the application of additive manufacturing technology to fabricate "device for uniform flow distribution".
8

Investigation of unsteady and non-uniform flow and sediment transport characteristics at culvert sites

Ho, Hao-Che 01 December 2010 (has links)
The present study is an integral part of a broader study focused on the design and implementation of self-cleaning culverts, i.e., configurations that prevent the formation of sediment deposits after culvert construction or cleaning. Sediment deposition at culverts is influenced by many factors, including the size and characteristics of material of which the channel is composed, the hydraulic characteristics generated under different hydrologic events, the culvert geometry design, channel transition design, and the vegetation around the channel. The multitude of combinations produced by this set of variables makes the investigation of practical situations challenging. In addition to the above considerations, the field observations, and the laboratory and numerical experiments have revealed additional complexities of the flow and sediment transport through culverts that further increase the dimensions of the investigation. The flow complexities investigated in this study entail: flow non-uniformity in the areas of transition to and from the culvert, flow unsteadiness due to the flood wave propagation, and the complex correlation between the flow and sediment hydrographs produced during storm events. To date, the literature contains no systematic studies on sediment transport through multi-box culverts. Similarly, there is limited knowledge about the non-uniform, unsteady sediment transport in channels of variable geometry. Furthermore, there are few readily useable numerical models that can reliably simulate flow and sediment transport in such complex situations. Given the current state of knowledge, the main goal of the present study is to investigate the above flow complexities in order to provide the needed insights for optimizing the culvert design. The research was phased so that field observations were conducted first to understand the culvert behavior in Iowa landscape. Modeling through complementary hydraulic model and numerical experiments was subsequently carried out to gain the practical knowledge for the development of the self-cleaning culvert designs.
9

Achieving Uniform Flow Distribution in Compact Irrigation Splitter Boxes with High Flow Rates

Hogge, Joshua Ryan 01 May 2016 (has links)
In many irrigation systems and networks, there are multiple water users and shareholders who take their water from different locations along a single canal or pipeline. Often, irrigation splitter boxes are used to divert water to multiple shareholders from a single location. The splitter boxes, which can be small and compact, are generally installed at different locations along a piped irrigation supply line. The purpose of a splitter box is to split a specific amount of water so that each user receives their allotted portion, regardless of the flow rate in the system. Each splitter box usually includes two compartments, separated by a wall that acts as a weir for the water to flow over. The water in the supply pipe enters the box and fills the upstream compartment until it spills over the weir. As water flows over the weir, it is separated by vertical dividers. Each divider is positioned to split a certain percentage of the total flow to one of the outlet pipes, which carry the water to various destinations. In general, splitter boxes perform very well at lower flow rates. However, if high flow rates are present in the box, due to under-design of the box or for any reason, the water surface becomes turbulent and the flow profile over the weir becomes disturbed and nonuniform. Because of these conditions, the flow becomes unevenly distributed and an accurate flow split cannot be achieved. This study focuses on developing a solution that can be installed in flow splitter boxes to effectively dissipate energy and uniformly distribute the flow across the length of the weir during times of high flow rates.
10

Use of Nonlinear Volterra Theory in Predicting the Propagation of Non-uniform Flow Through an Axial Compressor

Luedke, Jonathan Glenn 07 December 2001 (has links)
Total pressure non-uniformities in an axial flow compressor can contribute to losses in aerodynamic operability through a reduction in stall margin, pressure rise and mass flow, and to loss of structural integrity through means of high cycle fatigue (HCF). HCF is a primary mechanism of blade failure caused by vibrations at levels exceeding material endurance limits. Previous research has shown total pressure distortions to be the dominant HCF driver in aero engines, and has demonstrated the damaging results of total pressure distortion induced HCF on first stage fan and compressor blade rows [Manwaring et al., 1997]. It is, however, also of interest to know how these distortion patterns propagate through a rotor stage and impact subsequent downstream stages and engine components. With current modeling techniques, total pressure distortion magnitudes can be directly correlated to induced blade vibratory levels and modes. The ability to predict downstream distortion patterns then allows for the inference of blade vibratory response of downstream blades to inlet distortion patterns. Given a total pressure distortion excitation entering a blade row, the nonlinear Volterra series can serve as a predictor of the downstream total pressure profile and therefore provide insight into the potential for HCF in downstream blade rows. This report presents the adaption of nonlinear Volterra theory to the prediction of the transport of non-uniform total pressure distortions through an axial flow compressor. The use of Volterra theory in nonlinear system modeling relies on the knowledge of Volterra kernels, which capture the behavior of a system's response characteristics. Here an empirical method is illustrated for identifying these kernels based on total pressure distortion patterns measured both upstream and downstream of a transonic rotor of modern design. A Volterra model based on these kernels has been applied to the prediction of distortion transfer at new operating points of the same rotor with promising results. Methods for improving Volterra predictions by training Volterra kernels along individual streamlines and normalizing total pressure data sets by physics-based parameters are also investigated. / Master of Science

Page generated in 0.059 seconds