• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Signals from Mobile Communication Base Station and Handset on the SAR Distribution in the Human Head

Chen, Yu-chi 15 August 2005 (has links)
In recent years, the wireless communication operators use more and more systems based on the transmission and reception of EM waves. As a result, more and more base stations are being installed on the rooftop of existing buildings in densely populated areas. The prevailing of wireless communications has prompted the public¡¦s concern of the health issue. To date, the most prominent and scientifically verifiable biological effect of EM waves is the heating effect. In order to maintain the users¡¦ health from the over-heating due to excessive use, analysis of the temperature distribution inside the human body is also very critical as well as the SAR guidelines. The purpose of this thesis is to investigate the SAR values and temperature distribution inside the human head, under the EM exposure of mobile communication base station and handset based on the use of finite-difference time-domain (FDTD) method. In general, we assumed that the far-field exposure of base station are uniform plane-wave exposures. The total-field / scattered-field (TF/SF) formulation implements a compact uniform plane-wave source permitting FDTD simulations to accurately predict the SAR distribution in the human head due to uniform plane-wave exposures. Furthermore, this thesis investigates the effects of the rectangular frames of the metallic spectacles at 900MHz and 1.8 GHz for the uniform plane wave.
2

Field Penetration into Metallic Enclosures Through Aperture Excited by Uniform Plane Wave

Chiou, Chin-Fa 01 August 2000 (has links)
The finite-difference time domain(FDTD) method is formulated by discretizing Maxwell¡¦s equation over a finite volume and approximating the derivatives with centered difference approximation. The total-field/scattered-field formulation use for simulating the uniform plane wave and the added -source formulation use for simulating the plane wave,compare the result of the electric field within metallic enclosures through aperture excited by uniform plane wave with plane wave,The larger of the exciting plane of the plane wave the more approximate to the result of the uniform plane wave .It must be very large for the induced electrical field within enclosure with a slot which vertical to interference source polarization . Generally speaking, the aperture on the enclosures not the slot but small holes on the condition of don¡¦t know interference source polarization.

Page generated in 0.0991 seconds