• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users

Barnett, C.T., De Asha, A.R., Skervin, T.K., Buckley, John, Foster, R.J. 20 September 2022 (has links)
Yes / Background: Individuals with lower-limb amputation can use running specific prostheses (RSP) that store and then return elastic energy during stance. However, it is unclear whether varying the stiffness category of the same RSP affects spring-mass behaviour during self-selected, submaximal speed running in individuals with unilateral transtibial amputation. Research question: The current study investigates how varying RSP stiffness affects limb stiffness, running performance, and associated joint kinetics in individuals with a unilateral transtibial amputation. Methods: Kinematic and ground reaction force data were collected from eight males with unilateral transtibial amputation who ran at self-selected submaximal speeds along a 15 m runway in three RSP stiffness conditions; recommended habitual stiffness (HAB) and, following 10-minutes of familiarisation, stiffness categories above (+1) and below (-1) the HAB. Stance-phase centre of mass velocity, contact time, limb stiffness’ and joint/RSP work were computed for each limb across RSP stiffness conditions. Results: With increased RSP stiffness, prosthetic limb stiffness increased, whilst intact limb stiffness decreased slightly (p

Page generated in 0.118 seconds