• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From few-body atomic physics to many-body statistical physics : the unitary Bose gas and the three-body hard-core model / De la physique atomique à peu de corps à la physique statistique à N-corps : le gaz de Bose unitaire et le modèle de cœur dur à trois corps

Comparin, Tommaso 06 December 2016 (has links)
Les gaz d'atomes ultrafroids offrent des possibilités sans précédent pour la réalisation et la manipulation des systèmes quantiques. Le contrôle exercé sur les interactions entre particules permet d'atteindre le régime de fortes interactions, pour des espèces d'atomes à la fois fermioniques et bosoniques. Dans la limite unitaire, où la force d'interaction est à son maximum, des propriétés universelles émergent. Pour les atomes bosoniques, celles-ci comprennent l'effet Efimov, l'existance surprenante d'une séquence infinie d'états liés à trois corps. Dans cette thèse, nous avons étudiés un système de bosons unitaires. Partant des cas à deux et à trois corps, nous avons montrés que le modèle choisi capturait correctement les caractéristiques universelles de l'effet Efimov. Pour le modèle à N-corps, nous avons développé un algorithme de Monte Carlo quantique capable de réaliser les différentes phases thermodynamiques du système : gaz normal à haute-température, condensat de Bose-Einstein, et liquide d'Efimov. Un unique composant de notre modèle resterait pertinent à la limite de température infinie, à savoir la répulsion corps dur à trois corps, qui constitue une généralisation du potentiel classique entre sphères dures. Pour ce modèle, nous avons proposé une solution au problème d'empilement compact en deux et trois dimensions, fondée sur une Ansatz analytique et sur la technique de recuit simulé. En étendant ces résultats à une situation de pression finie, nous avons montré que le système présente une transition de fusion discontinue, que nous avons identifié à travers la méthode de Monte Carlo. / Ultracold atomic gases offer unprecedented possibilities to realize and manipulate quantum systems. The control on interparticle interactions allows to reach the strongly-interacting regime, with both fermionic and bosonic atomic species. In the unitary limit, where the interaction strength is at its maximum, universal properties emerge. For bosonic atoms, these include the Efimov effect, the surprising existence of an infinite sequence of three-body bound states. In this thesis, we have studied a system of unitary bosons. Starting from the two- and three-body cases, we have shown that the chosen model correctly captures the universal features of the Efimov effect. For the corresponding many-body problem, we have developed a quantum Monte Carlo algorithm capable of realizing the different thermodynamic phases in which the system may exist: The high-temperature normal gas, Bose-Einstein condensate, and Efimov liquid. A single ingredient of our model would remain relevant in the infinite-temperature limit, namely the three-body hard-core repulsion, which constitutes a generalization of the classical hard-sphere potential. For this model, we have proposed a solution to the two- and three-dimensional packing problem, based on an analytical ansatz and on the simulated-annealing technique. Extending these results to finite pressure showed that the system has a discontinuous melting transition, which we identified through the Monte Carlo method.
2

Dynamics and stability of a Bose-Fermi mixture : counterflow of superfluids and inelastic decay in a strongly interacting gas / Dynamique et stabilité d'un mélange de Bose-Fermi : contre-courant de superfluides et pertes inélastiques dans un gaz fortement corrélé

Laurent, Sébastien 09 October 2017 (has links)
La compréhension des effets des interactions dans un ensemble de particules quantiques représente un enjeu majeur de la physique moderne. Les atomes ultra-froids sont rapidement devenus un outil incomparable pour étudier ces systèmes quantiques fortement corrélés. Dans cette thèse, nous présentons plusieurs travaux portant sur les propriétés d’un mélange de superfluides de Bose et de Fermi créé à l’aide de vapeurs ultra-froides de ⁷Li et de ⁶Li. Nous étudions tout d'abord les propriétés hydrodynamiques du mélange en créant un contre-courant entre les superfluides. L'écoulement est dissipatif uniquement au dessus d'une vitesse critique que nous mesurons dans le crossover BEC-BCS. Une simulation numérique d’un contre-courant de deux condensats permet de mieux comprendre les mécanismes sous-jacents mis en jeu dans la dynamique. En particulier, l'étude numérique fournit des preuves supplémentaires que l'origine de la dissipation dans nos expériences est liée à l'émission d'excitation élémentaires dans chaque superfluide. Finalement, nous nous intéressons aux pertes inélastiques par recombinaison à trois corps qui peuvent limiter la stabilité de nos nuages. Ces pertes sont intimement liées aux corrélations à courte distance présentes dans le système et sont ainsi connectées aux propriétés universelles du gaz quantique. Cela se manifeste notamment par l’apparition de dépendances en densité ou en température inusuelles du taux de perte lorsque le système devient fortement corrélé. Nous démontrons cet effet dans deux exemples où les interactions sont résonantes, le cas du gaz de Bose unitaire et celui de notre mélange de superfluides Bose-Fermi. Plus généralement, nos travaux montrent que ces pertes inélastiques peuvent être utilisées pour sonder les corrélations quantiques dans un système en fortes interactions. / Understanding the effect of interactions in quantum many-body systems presents some of the most compelling challenges in modern physics. Ultracold atoms have emerged as a versatile platform to engineer and investigate these strongly correlated systems. In this thesis, we study the properties of a mixture of Bose and Fermi superfluids with tunable interactions produced using ultracold vapors of ⁷Li and ⁶Li. We first study the hydrodynamic properties of the mixture by creating a counterflow between the superfluids. The relative motion only exhibit dissipation above a critical velocity that we measure in the BEC-BCS crossover. A numerical simulation of counterflowing condensates allows for a better understanding of the underlying mechanisms at play in the dynamics. In particular, this numerical study provides additional evidence that the onset of friction in our experiment is due to the simultaneous generation of elementary excitations in both superfluids. Finally, we consider the inelastic losses that occur via three-body recombination in our cold gases. This few-body process is intimately related to short-distance correlations and is thereby connected to the universal properties of the many-body system. This manifests as the apparition of an unusual dependence on density or temperature in the loss rate when increasing the interactions. We demonstrate this effect in two examples where interactions are resonant: the case of a dilute unitary Bose gas and the one of impurities weakly coupled to a unitary Fermi gas. More generally, our work shows that inelastic losses can be used to probe quantum correlations in a many-body system.

Page generated in 0.0437 seconds