• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional renormalisation group and nuclear matter

Jaramillo Avila, Benjamin Raziel January 2015 (has links)
This thesis deals with systems of interacting particles with very low energy in the limit where the particle-particle scattering is much larger than the range of the interactions. We use a quantum-field-theory approach which allows us to study both few-body and dense-matter systems in a unified framework. This allows to introduce composite fields of two and three particles (when appropriate). The quantum corrections are calculated nonperturbatively with the Functional RenormalisationGroup. We deal with three types of systems. First we study systems with three and four scalar particles. For three-particle systems our framework describes the Efimov effect. During the FRG flow in the scaling limit, the four-particle system has an infinite sequence of (unphysical) four-particle states on top of each Efimov trimer. This is a case of super Efimov behaviour. Three of these four-particle states survive to the physical limit. Two of these three states have been found in exact quantum-mechanical calculations, and have also been observed in gases of ultracold atoms. Next, this thesis studies systems of three and four spin-1/2 particles. In the scaling limit, we find attractive fixed points for the three- and four-particle systems. Out of the scaling limit, we study atom-molecule scattering and molecule-molecule scattering, in particular their scattering length. Finally, we study dense-matter systems of spin-1/2 particles. This calculation includes all the two-, three-, and four-particle interactions. These systems show spontaneous symmetry breaking: the two-particle field has a finite classical value. We find the value of the atom gap in units of the chemical potential.
2

Thermodynamic and hydrodynamic behaviour of interacting Fermi gases

Goulko, Olga January 2012 (has links)
Fermionic matter is ubiquitous in nature, from the electrons in metals and semiconductors or the neutrons in the inner crust of neutron stars, to gases of fermionic atoms, like 40K or 6Li that can be created and studied under laboratory conditions. It is especially interesting to study these systems at very low temperatures, where we enter the world of quantum mechanical phenomena. Due to the Fermi-Dirac statistics, a dilute system of spin-polarised fermions exhibits no interactions and can be viewed as an ideal Fermi gas. However, interactions play a crucial role for fermions of several spin species. This thesis addresses several questions concerning interacting Fermi gases, in particular the transition between the normal and the superfluid phase and dynamical properties at higher temperatures. First we will look at the unitary Fermi gas: a two-component system of fermions interacting with divergent scattering length. This system is particularly interesting as it exhibits universal behaviour. Due to the strong interactions perturbation theory is inapplicable and no exact theoretical description is available. I will describe the Determinant Diagrammatic Monte Carlo algorithm with which the unitary Fermi gas can be studied from first principles. This algorithm fails in the presence of a spin imbalance (unequal number of particles in the two components) due to a sign problem. I will show how to apply reweighting techniques to generalise the algorithm to the imbalanced case, and present results for the critical temperature and other thermodynamic observables at the critical point, namely the chemical potential, the energy per particle and the contact density. These are the first numerical results for the imbalanced unitary Fermi gas at finite temperature. I will also show how temperatures beyond the critical point can be accessed and present results for the equation of state and the temperature dependence of the contact density. At sufficiently high temperatures a semiclassical description captures all relevant physical features of the system. The dynamics of an interacting Fermi gas can then be studied via a numerical simulation of the Boltzmann equation. I will describe such a numerical setup and apply it to study the collision of two spin-polarised fermionic clouds. When the two components are separated in an elongated harmonic trap and then released, they collide and for sufficiently strong interactions can bounce off each other several times. I will discuss the different types of the qualitative behaviour, show how they can be interpreted in terms of the equilibrium properties of the system, and explain how they relate to the coupling between different excitation modes. I will also demonstrate how transport coefficients, for instance the spin drag, can be extracted from the numerical data.
3

Symétries, courants et holographie des spins élevés / Symmetries, currents and holography of higher spins

Meunier, Elisa 22 November 2012 (has links)
La théorie des spins élevés est le domaine de la physique théorique au centre de cette thèse. Le contexte général de la naissance de cette théorie est présentée dans l’introduction. La première partie est axée sur les ingrédients (méthode de Noether, fonctions génératrices et formalisme ambiant) permettant la construction de vertex cubiques entre un champ scalaire de matière et un champ de jauge de spin élevé dans un espace-temps à courbure constante à partir des courants conservés en espace-temps plat. Dans un second temps, nous préparons les éléments pour un futur test de la correspondance holographique à l’ordre cubique voire quartique en la constante de couplage. Plus précisément, nous révisons en détail le calcul de certains propagateurs, ce qui nous mène à calculer les fonctions à trois points impliquant deux scalaires. La dernière partie, bien que concernant toujours l’holographie des spins élevés, traite de la physique non-relativiste. Les symétries et les courants d’un gaz parfait/unitaire de Fermi y sont étudiés. Le lien entre physiques relativiste et non-relativiste est obtenue grâce à la réduction dimensionnelle de Bargmann. / The higher spin theory is the field of theoretical physics at the center of this thesis. The general context of the birth of this theory is presenting in the introduction. The first part focuses on the ingredients (Noether method, generating functions and ambient formalism) for the construction of cubic vertices between a scalar matter field and a higher spin gauge field in a constant curvature space-time from conserved currents in flat space-time. In a second step, we prepare the around for a future test of the holographic correspondence in the cubic or quartic order in the coupling constant. More specifically, we review in detail the computation of some propagators, which leads us to calculate three-point functions involving two scalars. The last part, although always on the higher spin holography, deals with non-relativistic physics. Symmetries and currents of an ideal or unitary Fermi gas are studied. The link between relativistic and non-relativistic physics is obtained by Bargmann dimensional reduction.

Page generated in 0.0494 seconds