• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles de l'univalence dans le cadre équivariant / On lifting univalence to the equivariant setting

Bordg, Anthony 09 November 2015 (has links)
Cette thèse de doctorat a pour sujet les modèles de la théorie homotopique des types avec l'Axiome d'Univalence introduit par Vladimir Voevodsky. L'auteur prend pour cadre de travail les définitions de type-theoretic model category, type-theoretic fibration category (cette dernière étant la notion de modèle considérée dans cette thèse) et d'univers dans une type-theoretic fibration category, définitions dues à Michael Shulman. La problématique principale de cette thèse consiste à approfondir notre compréhension de la stabilité de l'Axiome d'Univalence pour les catégories de préfaisceaux, en particulier pour les groupoïdes équipés d'une involution. / This PhD thesis deals with some new models of Homotopy Type Theory and the Univalence Axiom introduced by Vladimir Voevodsky. Our work takes place in the framework of the definitions of type-theoretic model categories, type-theoretic fibration categories (the notion of model under consideration in this thesis) and universe in a type-theoretic fibration category, definitions due to Michael Shulman. The goal of this thesis consists mainly in the exploration of the stability of the Univalence Axiom for categories of functors , especially for groupoids equipped with involutions.

Page generated in 0.1159 seconds