• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 39
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 167
  • 167
  • 71
  • 70
  • 67
  • 26
  • 20
  • 20
  • 17
  • 14
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A variação da profundidade em função do tempo, na saída de um canal retangular curto de declividade nula, após a abertura rápida de uma comporta / The variation of the depth versus time, at the exit of a short rectangular channel of zero slope, after the fast opening of a floodgate

Barbosa, Elder Damião 31 March 2000 (has links)
O escoamento hidrodinâmico é descrito por meio das equações da continuidade e da quantidade de movimento em conjunto com as condições iniciais e de contorno. Neste trabalho de pesquisa, o escoamento não permanente na saída de um canal retangular curto de declividade nula, resultante da abertura rápida de uma comporta foi experimentalmente investigado. Para determinar o coeficiente de pressão e o comprimento do trecho a montante da comporta com distribuição de pressão não hidrostática, usou-se um modelo unidimensional, descrito pelas equações de Saint Venant, para representar o fenômeno. Utilizou-se o método de Lax-Wendroff para obter as curvas características do fenômeno e compará-las com os resultados obtidos experimentalmente. Várias comparações foram feitas possibilitando a avaliação de valores para os parâmetros que definem a região com distribuição de pressão não hidrostática. Os resultados calculados para os valores de parâmetros constantes, estão de acordo com os resultados experimentais. Os resultados experimentais ajustam-se melhor quando os valores dos parâmetros variam no decorrer do tempo. / The hydrodynamic flow is described by means of the equations of the continuity and momentum together with the initial conditions, the boundary conditions. In this research work, the unsteady flow at the exit of a short rectangular channel of zero slope, resulting from the fast opening of a floodgate was investigated experimentally. For determining the pressure coefficient and the length of the upstream reach of the floodgate with non-hydrostatic pressure distribution, a one-dimensional model described by Saint Venant equations is used to represent the phenomenon. The Lax-Wendroff method was used to obtain the curves characteristics of the phenomenon and to compare them with the results obtained experimentally. Several comparisons were made to facilitate the evaluation of values for the parameters that define the region with non-hydrostatic pressure distribution. The results calculated for the values of constant parameters are in agreement with the experimental results. The experimental results are better adjusted when the values of the parameters vary in elapsing of the time.
122

Numerical simulation of flows in an active air intake device of internal combustion engine with pulsated air flow / Simulation numérique des écoulements au niveau d’un système d’admission d’air actif de moteur à combustion interne en présence d’un débit d'air pulsé

Kumar, Deepak 13 February 2018 (has links)
Les émissions polluantes à l’échappement des véhicules automobiles sont l'une des principales sources de pollution de l'air dans le monde d'aujourd'hui. Par conséquent, la législation a évolué afin de limiter ces émissions. L'un des aspects clés pour répondre consiste à bien maîtriser les échanges gazeux au sein du moteur à combustion interne. Cette amélioration est possible par l'optimisation de répartiteurs d'admission d'air. Dans ces répartiteurs d'admission d'air, la maitrise de l’écoulement de type tumble est une piste de progrès. Des volets sont installés à la sortie du répartiteur afin d'améliorer le rapport de tumble et donc le mélange air-carburant (VTS-Variable Tumble System). Une autre caractéristique de l'écoulement à l'intérieur des répartiteurs est l'effet des écoulements pulsés qui engendrent des fluctuations de pression assez importante. Par conséquent, le but de cette étude consiste à simuler le flux d'air pulsé à l'intérieur des répartiteurs d'admission et à identifier l'effet des pulsations de pression sur les composants actifs tels que les volets. Le travail de simulation dans la présente thèse a été effectué à partir du code open source CFD OpenFOAM. Dans un premier temps, l'effet des pulsations de pression est simulé à l'intérieur d'un tube d'acier et une méthodologie de simulation est développée. Les résultats de la simulation sont validés à partir de résultats expérimentaux obtenus sur un dispositif spécifique, le banc dynamique. Ensuite, des simulations ont été effectuées sur le répartiteur d'admission principal avec des volets. Tout d’abord, les simulations sont effectuées en régime permanent avec cinq positions d'ouverture différentes du clapet. Les forces et les moments agissant sur le volet en régime permanent sont obtenus et analysés. Puis, des simulations en régime transitoire avec des effets de pulsation de pression sont effectuées. Les résultats de la simulation instationnaire sont comparés aux résultats expérimentaux en termes de fluctuations de pression relative. Les effets des pulsations de pression sur les forces aérodynamiques et les moments agissant sur les volets sont analysés et commentés. / The exhaust emissions from automobiles are one of the major sources of air pollution in today’s world. Thence,research and development is the key feature of the modern automotive industries to meet strict emission legislation. One of the key aspects to meet these requirements is to improve the gas exchange process within internal combustion engines. It is possible by the design optimization of the air intake manifolds for internal combustion engines. One of such advancement in air intake manifolds is variable tumble systems (VTS). In VTS system, tumble flaps are installed at the exit of the manifold runner in order to improve tumble ratio and hence air-fuel mixing. Another feature of the flow inside the intake manifolds is pressure pulsation effect. Therefore, the aim of the Ph.D. work is to simulate the pulsating air flow inside the air intake manifolds and to identify the effect of the pressure pulsations on the active components like tumble flaps. The simulation work in the present thesis has been carried out on open source CFD code OpenFOAM. In a first step, the effect of pressure pulsations is simulated inside a steel tube and a simulation methodology is developed. The results of the simulation are validated on a specific experimental device, the dynamic flow bench. Then,simulations have been carried out on the main intake manifold with tumble flaps. Firstly, the simulations are performed with five different opening positions of the tumble flap in a steady state configuration. The forces and moments acting on the flap in steady state are obtained and analyzed. Then, unsteady simulations with pressure pulsation effects are performed. The results of obtained from unsteady simulation are compared with the experimental results in terms of relative pressure fluctuations. The effect of the pressure pulsation on the aerodynamic forces and moments acting on the tumble flaps are analyzed and explained.
123

Real-Time Operation of River-Reservoir Systems During Flood Conditions Using Optimization-Simulation Model with One- and Two-Dimensional Modeling

January 2019 (has links)
abstract: Flooding is a critical issue around the world, and the absence of comprehension of watershed hydrologic reaction results in lack of lead-time for flood forecasting and expensive harm to property and life. It happens when water flows due to extreme rainfall storm, dam breach or snowmelt exceeds the capacity of river system reservoirs and channels. The objective of this research was to develop a methodology for determining a time series operation for releases through control gates of river-reservoir systems during flooding events in a real-time using one- and/or two-dimensional modeling of flows through river-reservoir systems. The optimization-simulation methodology interfaces several simulation-software coupled together with an optimization model solved by genetic algorithm coded in MATLAB. These software include the U.S. Army Corps of Engineers HEC-RAS linked the genetic algorithm in MATLAB to come up with an optimization-simulation model for time series gate openings to control downstream elevations. The model involves using the one- and two-dimensional ability in HEC-RAS to perform hydrodynamic routing with high-resolution raster Digital Elevation Models. Also, the model uses both real-time gridded- and gaged-rainfall data in addition to a model for forecasting future rainfall-data. This new model has been developed to manage reservoir release schedules before, during, and after an extraordinary rainfall event that could cause extreme flooding. Further to observe and control downstream water surface elevations to avoid exceedance of threshold of flood levels in target cells in the downstream area of study, and to minimize the damage and direct effects in both the up and downstream. The application of the complete optimization-simulation model was applied to a portion of the Cumberland River System in Nashville, Tennessee for the flooding event of May 2010. The objective of this application is to demonstrate the applicability of the model for minimizing flood damages for an actual flood event in real-time on an actual river basin. The purpose of the application in a real-time framework would be to minimize the flood damages at Nashville, Tennessee by keeping the flood stages under the 100-year flood stage. This application also compared the three unsteady flow simulation scenarios: one-dimensional, two-dimensional and combined one- and two-dimensional unsteady flow. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2019
124

Experimental and Computational Analysis of an Axial Turbine Driven by Pulsing Flow

Fernelius, Mark H. 01 April 2017 (has links)
Pressure gain combustion is a form of combustion that uses pressure waves to transfer energy and generate a rise in total pressure during the combustion process. Pressure gain combustion shows potential to increase the cycle efficiency of conventional gas turbine engines if used in place of the steady combustor. However, one of the challenges of integrating pressure gain combustion into a gas turbine engine is that a turbine driven by pulsing flow experiences a decrease in efficiency. The interaction of pressure pulses with a turbine was investigated to gain physical insights and to provide guidelines for designing turbines to be driven by pulsing flow. An experimental rig was built to compare steady flow with pulsing flow. Compressed air was used in place of combustion gases; pressure pulses were created by rotating a ball valve with a motor. The data showed that a turbine driven by full annular pressure pulses has a decrease in turbine efficiency and pressure ratio. The average decrease in turbine efficiency was 0.12 for 10 Hz, 0.08 for 20 Hz, and 0.04 for 40 Hz. The turbine pressure ratio, defined as the turbine exit total pressure divided by the turbine inlet total pressure, ranged from 0.55 to 0.76. The average decrease in turbine pressure ratio was 0.082 for 10 Hz, 0.053 for 20 Hz, and 0.064 for 40 Hz. The turbine temperature ratio and specific turbine work were constant. Pressure pulse amplitude, not frequency, was shown to be the main cause for the decrease in turbine efficiency. Computational fluid dynamics simulations were created and were validated with the experimental results. Simulations run at the same conditions as the experiments showed a decrease in turbine efficiency of 0.24 for 10 Hz, 0.12 for 20 Hz, and 0.05 for 40 Hz. In agreement with the experimental results, the simulations also showed that pressure pulse amplitude is the driving factor for decreased turbine efficiency and not the pulsing frequency. For a pulsing amplitude of 86.5 kPa, the efficiency difference between a 10 Hz and a 40 Hz simulation was only 0.005. A quadratic correlation between turbine efficiency and corrected pulse amplitude was presented with an R-squared value of 0.99. Incidence variation was shown to cause the change in turbine efficiency and a correlation between corrected incidence and corrected amplitude was established. The turbine geometry was then optimized for pulsing flow conditions. Based on the optimization results and observations, design recommendations were made for designing turbines for pulsing flow. The first design recommendation was to weight the design of the turbine toward the peak of the pressure pulse. The second design recommendation was to consider the range of inlet angles and reduce the camber near the leading edge of the blade. The third design recommendation was to reduce the blade turning to reduce the wake caused by pulsing flow. A new turbine design was created and tested following these design recommendations. The time-accurate validation simulation for a 10 Hz pressure pulse showed that the new turbine decreased the entropy generation by 35% and increased the efficiency by 0.04 (5.4%).
125

Simulering av översvämningar i Byälven

Midboe, Finn, Persson, Håkan January 2004 (has links)
Severe floods caused by heavy autumn rains in year 2000 raised the question whether measures to reduce the damage from high water levels, in the area surrounding lake Glafsfjorden and along the river Byälven down to lake Vänern, are possible. One option is to reduce flow resistance along the river and thereby lower the maximum water level a given inflow would cause. Good knowledge of hydraulic and hydrological conditions is necessary in order to estimate the effect of such flow-reducing measures. In order to quantify such effect a 1-dimensional hydraulic flow model has been set up for the river Byälven using the software package MIKE 11. The model is more detailed, especially concerning topography and bathymetry, than earlier models used for studies of the river. Boundary conditions consist of measured inflows, the level of the lake Vänern and runoff calculated using the HBV-model. The model was calibrated for two different floods and a good fit to measured water levels was obtained for both these periods. Using the calibrated model critical sections, causing much flow resistance during high floods, were identified. With that knowledge different measures to reduce high water levels was adopted to the model both individually and combined with each other and the model was run with boundary conditions mainly from the flood in year 2000. The most radical measures simulated resulted in a lowering of the maximum water in the two largest reservoirs Glafsfjorden and Harefjorden with 78 and 97 cm respectively. A more modest combination of measures gave water levels 48 and 84 cm lower than a model run without changes. Some combinations of relatively small measures lowered the maximum water level by a few decimeters. The simulation results give good guidance to further investigations and decisions of actual changes. The model constitutes a useful tool when making flood maps of the area and if water level forecasts would be needed during future floods. / Allvarliga översvämningar i samband med höstregn år 2000 väckte frågan om det går att vidta åtgärder för att minska skadorna vid höga flöden i området runt Glafsfjorden och längs Byälvens sträckning ner till Vänern. Ett alternativ är att med åtgärder längs älven underlätta vattnets utflöde och på så sätt minska den högsta vattennivå ett givet flöde orsakar. God kunskap om hydrauliska och hydrologiska förhållanden behövs för att bedöma nyttan av olika åtgärdsalternativ. För att kunna avgöra effekterna av olika åtgärdsalternativ har en 1-dimensionell strömningsmodell satts upp för Byälven i programverktyget MIKE 11. Modellen är mer detaljerad, framförallt beträffande höjdinformationen, än tidigare modeller som använts för studier av Byälven varit. Randvillkor till modellen utgörs av registrerade inflöden, Vänerns vattenstånd och avrinning modellerad med HBV-modellen. Modellen har kalibrerats för två översvämningsperioder och god anpassning uppnåddes för de vattenstånd som dessa situationer representerar och med dess hjälp har sedan älven studerats och områden som bromsar flödet har kunnat identifieras. Med kunskap om vilka områden som begränsar flödet mest har ett antal olika åtgärder simulerats i modellen, både var för sig och kombinerade med varandra. Randvillkoren för översvämningen år 2000 behölls och förändringarna lades in i modellen. De extremaste åtgärderna som simulerats resulterade i minskningar av de högsta vattennivåerna i de två största vattenmagasinen Glafsfjorden och Harefjorden med 78 respektive 97 cm. Mer realistiska åtgärdspaket gav minskningar med i storleksordningen 48 respektive 84 cm och även relativt små ingrepp gav minskningar på några decimeter. Simuleringsresultaten ger god vägledning för vidare undersökningar av och beslut om konkreta åtgärder i Byälven. Dessutom utgör modellen ett bra verktyg för att ta fram översvämningskartor och för att prognostisera vattennivåer vid nya översvämningssituationer.
126

A variação da profundidade em função do tempo, na saída de um canal retangular curto de declividade nula, após a abertura rápida de uma comporta / The variation of the depth versus time, at the exit of a short rectangular channel of zero slope, after the fast opening of a floodgate

Elder Damião Barbosa 31 March 2000 (has links)
O escoamento hidrodinâmico é descrito por meio das equações da continuidade e da quantidade de movimento em conjunto com as condições iniciais e de contorno. Neste trabalho de pesquisa, o escoamento não permanente na saída de um canal retangular curto de declividade nula, resultante da abertura rápida de uma comporta foi experimentalmente investigado. Para determinar o coeficiente de pressão e o comprimento do trecho a montante da comporta com distribuição de pressão não hidrostática, usou-se um modelo unidimensional, descrito pelas equações de Saint Venant, para representar o fenômeno. Utilizou-se o método de Lax-Wendroff para obter as curvas características do fenômeno e compará-las com os resultados obtidos experimentalmente. Várias comparações foram feitas possibilitando a avaliação de valores para os parâmetros que definem a região com distribuição de pressão não hidrostática. Os resultados calculados para os valores de parâmetros constantes, estão de acordo com os resultados experimentais. Os resultados experimentais ajustam-se melhor quando os valores dos parâmetros variam no decorrer do tempo. / The hydrodynamic flow is described by means of the equations of the continuity and momentum together with the initial conditions, the boundary conditions. In this research work, the unsteady flow at the exit of a short rectangular channel of zero slope, resulting from the fast opening of a floodgate was investigated experimentally. For determining the pressure coefficient and the length of the upstream reach of the floodgate with non-hydrostatic pressure distribution, a one-dimensional model described by Saint Venant equations is used to represent the phenomenon. The Lax-Wendroff method was used to obtain the curves characteristics of the phenomenon and to compare them with the results obtained experimentally. Several comparisons were made to facilitate the evaluation of values for the parameters that define the region with non-hydrostatic pressure distribution. The results calculated for the values of constant parameters are in agreement with the experimental results. The experimental results are better adjusted when the values of the parameters vary in elapsing of the time.
127

Metody stanovení hydraulických parametrů rázových vln v souvislosti s provozem MVE / Estimation of hydraulic parameters of surge waves caused by the small hydropower plants operation

Brůžek, Jan January 2015 (has links)
The objective of this thesis is verifying estimation of hydraulic parameters of surge waves and compare the possibility to use software in assesing the surge waves caused by small hydropower plants operation. The study is divided to several parts which includederivation of analytic solution, description of numerical solution, verification of selected estimations and aplication on real example.
128

EXPERIMENTAL STUDIES ON FREE JET OF MATCH ROCKETS AND UNSTEADY FLOW OF HOUSEFLIES

Angel David Lozano Galarza (10757814) 01 June 2021 (has links)
<p>The aerodynamics of insect flight is not well understood despite it has been extensively investigated with various techniques and methods. Its complexities mainly have two folds: complex flow behavior and intricate wing morphology. The complex flow behavior in insect flight are resulted from flow unsteadiness and three-dimensional effects. However, most of the experimental studies on insect flight were performed with 2D flow measurement techniques whereas the 3D flow measurement techniques are still under developing. Even with the most advanced 3D flow measurement techniques, it is still impossible to measure the flow field closed to the wings and body. On the other hand, the intricate wing morphology complicates the experimental studies with mechanical flapping wings and make mechanical models difficult to mimic the flapping wing motion of insects. Therefore, to understand the authentic flow phenomena and associated aerodynamics of insect flight, it is inevitable to study the actual flying insects. </p> <p>In this thesis, a recently introduced technique of schlieren photography is first tested on free jet of match rockets with a physics based optical flow method to explore its potential of flow quantification of unsteady flow. Then the schlieren photography and optical flow method are adapted to tethered and feely flying houseflies to investigate the complex wake flow and structures. In the end, a particle tracking velocimetry system: Shake the Box system, is utilized to resolve the complex wake flow on a tethered house fly and to acquire some preliminary 3D flow field data</p>
129

Hydraulické posouzení rázových jevů v jezové zdrži Střekov / Hydraulic assessment of surge waves in the Strekov weir reservoir

Stříž, Jaroslav January 2019 (has links)
The main aim of the thesis is to assess the origin of surge phenomena, primarily surge waves at the weir pool Střekov, using the selected methodology. The paper is divided into several parts. There is a brief introduction to the problematics and research of possible solution methods, followed by a verification of these methods on a physical model and finally an application of a numerical method for an assessment of the chosen locality.
130

High-Frame-Rate Oil Film Interferometry

White, Jonathan Charles 01 May 2011 (has links) (PDF)
High-Frame-Rate Oil Film Interferometry Jonathan Charles White This thesis presents the design and implementation of a high-frame-rate oil film interferometry technique (HOFI) used to directly measure skin friction in time dependent flows. Experiments were performed to determine the ability of a high-speed camera to capture oil film interferometry images. HOFI was found to be able to capture these interferometry images at frequencies up to 105 Hz. Steady laminar and turbulent flows were tested. Transient flows tested consisted of a wind tunnel ramping up in velocity and a laminar boundary layer which was intermittently tripped to turbulence by puffing air out of a pressure tap. Flow speeds ranged from 0 to 108 ft/sec and 10 and 50 cSt Dow Corning 200 dimethylpolysiloxane silicone oil was used. The skin friction was determined from the rate of change of the height of the oil film using lubrication theory. The height of the oil film was determined from the high speed camera interferogram images using a MATLAB script which determined fringe spacing by fitting a four-parameter sine wave to the intensity levels in each image. The MATLAB script was able to determine the height of the oil film for thousands of interferogram images in only a few minutes with sub-pixel error in fringe spacing. The skin friction was calculated using the oil film height history allowing for the direct measurement of skin friction in time dependent flows.

Page generated in 0.1011 seconds