Spelling suggestions: "subject:"unsteady low"" "subject:"unsteady flow""
151 |
1D model for flow in the pulmonary airway systemAlahmadi, Eyman Salem M. January 2012 (has links)
Voluntary coughs are used as a diagnostic tool to detect lung diseases. Understanding the mechanics of a cough is therefore crucial to accurately interpreting the test results. A cough is characterised by a dynamic compression of the airways, resulting in large flow velocities and producing transient peak expiratory flows. Existing models for pulmonary flow have one or more of the following limitations: 1) they assume quasi-steady flows, 2) they assume low speed flows, 3) they assume a symmetrical branching airway system. The main objective of this thesis is to develop a model for a cough in the branching pulmonary airway system. First, the time-dependent one-dimensional equations for flow in a compliant tube is used to simulate a cough in a single airway. Using anatomical and physiological data, the tube law coupling the fluid and airway mechanics is constructed to accurately mimic the airway behaviour in its inflated and collapsed states. Next, a novel model for air flow in an airway bifurcation is constructed. The model is the first to capture successfully subcritical and supercritical flows across the bifurcation and allows for free time evolution from one case to another. The model is investigated by simulating a cough in both symmetric and asymmetric airway bifurcations. Finally, a cough model for the complete branching airway system is developed. The model takes into account the key factors involved in a cough; namely, the compliance of the lungs and the airways, the coughing effort and the sudden opening of the glottis. The reliability of the model is assessed by comparing the model predictions with previous experimental results. The model captures the main characteristics of forced expiatory flows; namely, the flow limitation phenomenon (the flow out of the lungs becomes independent of the applied expiratory effort) and the negative effort dependence phenomenon (the flow out of the lungs decreases with increasing expiratory effort). The model also gives a good qualitative agreement with the measured values of airway resistance. The location of the collapsed airway segment during forced expiration is, however, inconsistent with previous experimental results. The effect of changing the model parameters on the model predictions is therefore discussed.
|
152 |
Shock diffraction phenomena and their measurementQuinn, Mark Kenneth January 2013 (has links)
The motion of shock waves is important in many fields of engineering and increasingly so with medical applications and applications to inertial confinement fusion technologies. The flow structures that moving shock waves create when they encounter a change in area is complex and can be difficult to understand. Previousresearchers have carried out experimental studies and many numerical studies looking at this problem in more detail. There has been a discrepancy between numerical and experimental work which had remained unanswered. One of the aims of this project is to try and resolve the discrepancy between numerical and experimental work and try to investigate what experimental techniques are suitable for work of this type and the exact way in which they should be applied. Most previous work has focused on sharp changes in geometry which induce immediate flow separation. In this project rounded corners will also be investigated and the complex flow features will be analyzed.Two geometries, namely a sharp 172 degree knife-edge and a 2.8 mm radius rounded corner will be investigated at three experimental pressure ratios of 4, 8 and 12 using air as the driver gas. This yields experimental shock Mach numbers of 1.28, 1.46 and 1.55. High-speed schlieren and shadowgraph photography with varying levels of sensitivity were used to qualitatively investigate the wave structures. Particle image velocimetry (PIV), pressure-sensitive paint (PSP) and traditional pressure transducers were used to quantify the flow field. Numerical simulations were performed using the commercial package Fluent to investigate the effect of numerical schemes on the flow field produced and for comparison with the experimental results. The sharp geometry was simulated successfully using an inviscid simulation while the rounded geometry required the addition of laminar viscosity. Reynolds number effects will be only sparsely referred to in this project as the flows under investigation show largely inviscid characteristics. As the flow is developing in time rather than in space, quotation of a distance-based Reynolds number is not entirely appropriate; however, Reynolds number based on the same spatial location but varying in time will be mentioned. The density-based diagnostics in this project were designed to have a depth of field appropriate to the test under consideration. This approach has been used relatively few times despite its easy setup and significant impact on the results. This project contains the first quantative use of PIV and PSP to shock wave diffraction. Previous studies have almost exclusively used density-based diagnostics which, although give the best impression of the flow field, do not allow for complete analysis and explanation of all of the flow features present. PIV measurements showed a maximum uncertainty of 5% while the PSP measurements showed an uncertainty of approximately 10%.The shock wave diffraction process, vortex formation, shear layer structure, secondary and even tertiary expansions and the shock vortex interaction were investigate. The experimental results have shown that using one experimental technique in isolation can give misleading results. Only by using a combination of experimental techniques can we achieve a complete understanding of the flow field and draw conclusions on the validity of the numerical results. Expanding the range of the experimental techniques currently in use is vital for experimental aerodynamic testing to remain relevant in an industry increasingly dominated by numerical research. To this end, significant research work has been carried out on extending the range of the PSP technique to allow for the capture of shock wave diffraction, one of the fastest transient fluid processes, and for applications to low-speed flow (< 20 ms−1).
|
153 |
Metoda tlak-čas pro stanovení průtoku na velkých vodních dílech / Pressure-time method for determination of the flow rate in the hydro power plantsHrubý, Erik January 2017 (has links)
The aim of this master thesis is to explain using of the pressure-time method, commonly known as Gibson’s method for non-stationary discharge evaluation through water machineries. The thesis included the principle of this method, deriving the method and the problems, which happened in thanks of using this method. In the second part of this thesis are in details shown results of non-stationary discharge by pressure-time method and also there is the computation of the kinetic member on the resulting discharge. Next part is about refinement of this method by evaluation Penstock factor for each segment of feeder (direct pipe, taper and pipe elbow) using MS Excel and CFD calculations. The last capture is about influence of unsteady friction. In the beginning are shown basic terms and explain the principle of this losses. In the next part is proposed numerical model of losses and their influence on calculation of total Penstock factor of feeder.
|
154 |
An Accelerated Method for Mean Flow Boundary Conditions for Computational AeroacousticsSamani, Iman January 2018 (has links)
No description available.
|
155 |
Electrokinetic flow in micro- and nano-fluidic componentsZheng, Zhi 19 November 2003 (has links)
No description available.
|
156 |
Experimental Investigation of Performance, Flow Interactions and Rotor Forcing in Axial Partial Admission TurbinesFridh, Jens January 2012 (has links)
The thesis comprises a collection of four papers with preceding summary and supplementary appendices. The core investigation solely is of experimental nature although reference and comparisons with numerical models will be addressed. The first admission stage in an industrial steam turbine is referred to as the control stage if partial admission is applied. In order to achieve high part load efficiency and a high control stage output it is routinely applied in industrial steam turbines used in combined heat and power plants which frequently operate at part load. The inlet flow is individually throttled into separate annular arcs leading to the first stator row. Furthermore, partial admission is sometimes used in small-scale turbine stages to avoid short vanes/blades in order to reduce the impact from the tip leakage and endwall losses. There are three main aspects regarding partial admission turbines that need to be addressed. Firstly, there are specific aerodynamic losses: pumping-, emptying- and filling losses attributed to the partial admission stage. Secondly, if it is a multistage turbine, the downstream stages experience non-periodic flow around the periphery and circumferential pressure gradients and flow angle variations that produce additional mixing losses. Thirdly, the aeromechanical condition is different compared to full admission turbines and the forcing on downstream components is also circumferentially non-periodic with transient load changes. Although general explanations for partial admission losses exist in open literature, details and loss mechanisms have not been addressed in the same extent as for other sources of losses in full admission turbines. Generally applicable loss correlations are still lacking. High cycle fatigue due to unforeseen excitation frequencies or due to under estimated force magnitudes, or a combination of both causes control stage breakdowns. The main objectives of this thesis are to experimentally explore and determine performance and losses for a wide range of partial admission configurations. And, to perform a forced response analysis from experimental data for the axial test turbine presented herein in order to establish the forced response environment and identify particularities important for the design of control stages. Performance measurements concerning the efficiency trends and principal circumferential and axial pressure distortions demonstrate the applicability of the partial admission setup employed in the test turbine. Findings reveal that the reaction degree around the circumference varies considerably and large flow angle deviations downstream of the first rotor are present, not only in conjunction to the sector ends but stretching far into the admission sector. Furthermore, it is found that the flow capacity coefficient increases with reduced admission degree and the filling process locally generates large rotor incidence variation associated with high loss. Moreover, the off design conditions and efficiency deficit of downstream stages are evaluated and shown to be important when considering the overall turbine efficiency. By going from one to two arcs at 52.4% admission nearly a 10% reduction in the second stage partial admission loss, at design operating point was deduced from measurements. Ensemble averaged results from rotating unsteady pressure measurements indicate roughly a doubling of the normalized relative dynamic pressure at rotor emptying compared to an undisturbed part of the admission jet for 76.2% admission. Forced response analysis reveals that a large number of low engine order force impulses are added or highly amplified due to partial admission because of the blockage, pumping, loading and unloading processes. For the test turbine investigated herein it is entirely a combination of number of rotor blades and low engine order excitations that cause forced response vibrations. One possible design approach in order to change the force spectrum is to alter the relationship between admitted and non-admitted arc lengths. / Denna sammanläggningsavhandling består av fyra artiklar och föregås av en sammanfattning med kompletterande bilagor. Kärnan av undersökningen är experimentell även om referenser och jämförelser med numeriska modeller förekommer där så bedöms lämpligt. Det första steget i en industriell ångturbin kallas reglersteg om partialpådrag tillämpas. Det används rutinmässigt i kraftvärmeanläggningar som ofta körs vid dellaster för att åstadkomma en hög dellastverkningsgrad och hög stegeffekt. Inloppsflödet delas in separata och individuellt strypreglerade pådragsbågar som leder till det första munstycksgittret. Ibland används partialpådrag i små turbiner för att undvika korta blad och på så sätt minska takläckage och ändväggsförlusternas inflytande på den totala förlusten. Det finns i huvudsak tre aerodynamiska/aeromekaniska egenheter som bör beaktas. Först det första är det speciella aerodynamiska förluster associerade till partialpådrag eller reglersteget: ventilations-, tömnings och fyllningsförluster. För det andra, om det är en flerstegsturbin påverkas också nedströms steg negativt av det asymmetriska flödet runt omkretsen som innefattar stora tryckvariationer och flödesvinkelvariationer. För det tredje är den aeromekaniska situationen speciell jämfört med ett fullpådraget steg. För partialpådrag existerar dynamiska krafter med snabba laständringar vid in och utpassering i pådragsbågen. Även om det existerar generella förklaringar i den öppna litteraturen angående förluster så har inte förlustmekanismerna utretts i samma omfattning jämfört med fullpådrag. Ingen generell förlustkorrelation finns. Utmattning på grund oförutsedda excitationsfrekvenser, underskattade kraftamplituder eller en kombination av båda orsakar reglerstegshaveri för ångturbinintressenter. De huvudsakliga målsättningarna med denna studie är att experimentellt utforska och bestämma prestanda och förluster för ett stort antal partialpådragskonfigurationer. Samt att genomföra en vibrationsanalys (relaterat till aerodynamiska kraftimpulser) utifrån mätdata från provturbinen avhandlad häri. Detta för att kartlägga de aeromekaniska förutsättningarna och om möjligt identifiera egenheter viktiga för konstruktion av reglersteg. Prestandamätningar rörande verkningsgradstrender och generella strömningsvariationer runt omkretsen bekräftar resultat från den öppna litteraturen och därmed demonstrerar dugligheten av den partialpådragskonfiguration som används i luftprovturbinen. Dessutom visar resultaten bland annat att reaktionsgraden varierar kraftigt runt omkretsen med stora variationer i rotorns utloppsvinkel inte enbart i anslutning till sektorändar utan långt in i pådragssektorn. Flödeskapacitetskoefficienten eller turbinkonstanten ökar med minskat pådrag och fyllningsprocessen genererar stora variationer i rotorns inloppsvinkel förknippade med höga förluster. Det är viktigt att beakta dellastförutsättningarna och verkningsgradsminskningen för nedströms steg. Genom att använda två pådragsbågar istället för en för ett givet pådrag av 52,4% minskar partialpådragsförlusterna för nedströmssteget med nästan 10 % vid designpunkten, härlett från mätningar. Samlade medelvärden från roterande instationära mätningar visar på en fördubbling av det relativa dynamiska trycket vid rotortömning jämfört med en opåverkad del av pådragsbågen. Vibrationsanalys (relaterat till aerodynamiska kraftimpulser) av mätdata avslöjar att partialpådrag orsakar en stor mängd kraftimpulser med låga varvtalsmultiplar, främst från ventilationen och påavlastningsprocesserna. För provturbinen så är det helt och hållet kombinationer mellan antalet rotorblad och dessa kraftimpulser som orsakar strömningspåverkade vibrationer. Ett möjligt tillvägagångssätt konstruktionsmässigt för att ändra kraftspektrumet är att ändra längförhållandet mellan pådragen och blockerad del. / QC 20120109
|
157 |
Erweiterung des Turbinenkennfeldes von Pkw-Abgasturboladern durch ImpulsbeaufschlagungReuter, Stefan 12 January 2011 (has links) (PDF)
Die Abgasturboaufladung erweist sich als sinnvolles Hilfsmittel den Kraftstoffverbrauch eines Hubkolbenverbrennungsmotors bei gleichbleibender Fahrdynamik zu verringern und somit die Effizienz des Motors zu erhöhen. Zur optimalen Nutzung der im Abgas enthaltenen Energie werden Abgassysteme moderner Pkw – Motoren äußerst kompakt ausgeführt, um der Abgasturboladerturbine ein möglichst hohes Enthalpiegefälle zur Verfügung zu stellen. Diese Umstände, sowie zunehmend kleinere Zylinderzahlen mit großen Zündabständen führen dazu, dass sich die Eintrittsbedingungen von Radialturbinen von Abgasturboladern heutiger Motoren periodisch ändern. Die Strömungsmaschine kann aufgrund ihrer Trägheit dem Druckanstieg nicht unverzögert folgen und wird vorwiegend bei niedrigen Schnelllaufzahlen betrieben.
Die Entwicklung von Abgasturboladern und deren Anpassung an den Verbrennungsmotor erfolgen überwiegend auf Grundlage von messtechnisch ermittelten Kennfeldern von Verdichter und Turbine. Diese werden an stationär betriebenen Heißgasprüfständen ermittelt. Aufgrund der stationären Leistungsbilanz zwischen beiden Strömungsmaschinen an diesen Prüfständen beschreiben stationär gemessene Turbinenkennfelder nicht den gesamten motorrelevanten Betriebsbereich der Turbine.
Für die Entwicklung innovativer Turboladerturbinen sind Untersuchungen der Turbinenwirkungsgrade und Durchsatzkennzahlen in diesen Betriebspunkten essentiell.
Zur Untersuchung von Wechselwirkungen zwischen aufgeladenen Verbrennungsmotoren und Aufladesystemen stellt die Motorprozessrechnung eine wichtige Technologie dar. Die numerische Beschreibung des Turboladerverhaltens im Motorbetrieb erfolgt ebenfalls auf Basis von gemessenen Turboladerkennfeldern. Aufgrund des eingeschränkten Messbereichs der Turbinenkennfelder werden diese stark extrapoliert und beschreiben das thermodynamische Verhalten der Turboladerturbine fragwürdig.
Die vorliegende Arbeit stellt ein neues Verfahren an einem erweiterten Heißgasprüfstand zur Vermessung und Untersuchung von Turboladerturbinen in motorrelevanten Betriebszuständen vor. Parallel wird ein Berechnungsmodell entwickelt, um Messergebnisse zu plausibilisieren und die numerische Beschreibung instationärer Turbinenströmungen zu untersuchen. Die Methode basiert auf der Ausnutzung zusätzlicher Beschleunigungsleistung zur Erhöhung der Aufnahme der Turbinenleistung, um niedrigere Schnelllaufzahlen unter motorrealistischen Randbedingungen untersuchen zu können. Mit Hilfe eines geeigneten Druckverlaufes werden temporär stationäre Strömungszustände erzeugt, sodass thermodynamische Zustände in der Turbine zuverlässig beschrieben werden können. Ferner werden Betriebsbedingungen der Turbinenuntersuchung denen der Turboladerturbine im Motorbetrieb angepasst. Kurzzeitig stellen sich quasi-stationäre Zustände ein, woraufhin phasenkorrigierte Messgrößen die Strömung in den Schaufelkanälen der Turbine belastbar beschreiben. Durch Variation der pulsierenden Strömung können Wirkungsgrad- und Massendurchsatzkennfelder mit hoher Abtastrate erweitert werden, wodurch verlässliche Interpolationen der Turbinenkennfelder bei niedrigen Laufzahlen möglich sind. Am Heißgasprüfstand lassen sich Turbineneintrittstemperatur, Druckamplitude und mittleres Druckverhältnis mit speziellen Impulsgeneratoren einstellen. Auch eine instationäre Massenstrommessung und Temperaturmessung ist möglich. Die instationäre Messmethode bildet eine Synthese mit stationären Turbinenvermessungen und deckt einen Großteil des Turbinenbetriebes aufgeladener Hubkolbenverbrennungsmotoren ab. Damit hat dieses Verfahren das Potential Turboladerkennfelder die am stationären Heißgasprüfstand ermittelt wurden sinnvoll zu ergänzen.
Ergebnisse der neuen Messmethode werden mit Resultaten äquivalenter Simulationsrechnungen auf Grundlage stationär und instationär ermittelter Kennfelder verglichen.
Auf Basis erweiterter Turbinenkennfelder können Wechselwirkungen zwischen dem Verbrennungsmotor und dem Aufladeaggregat mit Hilfe der Motorprozessrechnung genauer untersucht werden. Dies ermöglicht eine ideale Anpassung des Abgasturboladers an den Motor, wodurch Effizienz und Dynamik verbessert sowie Abgasemissionswerte des Antriebes reduziert werden können.
|
158 |
Unsteady gas flows and particle dynamics in the shock layer formed by the impingement of a supersonic two-phase jet onto a plate / Instationäre Strömungen und die Dynamik von Partikeln in der Stoßschicht beim Aufprall eines zweiphasigen Überschallfreistrahls auf eine PlatteKlinkov, Konstantin 10 May 2005 (has links)
No description available.
|
159 |
Unsteady Two Dimensional Jet with Flexible Flaps at the ExitDas, Prashant January 2016 (has links) (PDF)
The present thesis involves the study of introducing passive exit flexibility in a two dimensional starting jet. This is relevant to various biological flows like propulsion of aquatic creatures (jellyfish, squid etc.) and flow in the human heart. In the present study we introduce exit flexibility in two ways. The first method was by hinging rigid plates at the channel exit and the second was by attaching deformable flaps at the exit. In the hinged flaps cases, the experimental arrangement closely approximates the limiting case of a free-to-rotate rigid flap with negligible structural stiffness, damping and flap inertia; these limiting structural properties permitting the largest flap openings. In the deformable flaps cases, the flap’s stiffness (or its flexural rigidity EI) becomes an important parameter. In both cases, the initial condition was such that the flaps were parallel to the channel walls. With this, a piston was pushed in a controlled manner to form the starting jet. Using this arrangement, we start the flow and visualize the flap kinematics and make flow field measurements. A number of parameters were varied which include the piston speed, the flap length and the flap stiffness (in case of the deformable flaps).
In the hinged rigid flaps cases, the typical motion of the flaps involves a rapid opening with flow initiation and a subsequent more gradual return to its initial position, which occurs while the piston is still moving. The initial opening of the flaps can be attributed to an excess pressure that develops in the channel when the flow starts, due to the acceleration that has to be imparted to the fluid slug between the flaps. In the case with flaps, additional pairs of vortices are formed because of the motion of the flaps and a complete redistribution of vorticity is observed. The length of the flaps is found to significantly affect flap kinematics when plotted using the conventional time scale L/d. However, with a newly defined time-scale based on the flap length (L/Lf ), we find a good collapse of all the measured flap motions irrespective of flap length and piston velocity for an impulsively started piston motion. The maximum opening angle in all these impulsive velocity program cases, irrespective of the flap length, is found to be close to 15 degrees. Even though the flap kinematics collapses well with L/Lf , there are differences in the distribution of the ejected vorticity even for the same L/Lf .
In the deformable flap cases, the initial excess pressure in the flap region causes the flaps to bulge outwards. The size of the bulge grows in size, as well as moves outwards as the flow develops and the flaps open out to reach their maximum opening. Thereafter, the flaps start returning to their initial straight position and remain there as long as the piston is in motion. Once the piston stops, the flaps collapse inwards and the two flap tips touch each other. It was found that the flap’s flexural rigidity played an important role in the kinematics. We define a new time scale (t ) based on the flexural rigidity of the flaps (EI) and the flap length (Lf ). Using this new time scale, we find that the time taken to reach the maximum bulge (t* 0.03) and the time taken to reach the maximum opening (t* 0.1) were approximately similar across various flap stiffness and flap length cases. The motion of the flaps results in the formation of additional pairs of vortices. Interestingly, the total final circulation remains almost the same as that of a rigid exit case, for all the flap stiffness and flap lengths studied. However, the final fluid impulse (after all the fluid had come out of the flap region) was always higher in the flap cases as compared to the rigid exit case because of vorticity redistribution. The rate at which the impulse increases was also higher in most flap cases. The final impulse values were as large as 1.8 times the rigid exit case. Since the time rate of change of impulse is linked with force, the measurements suggest that introduction of flexible flaps at the exit could result in better propulsion performances for a system using starting jets.
The work carried out in this thesis has shown that by attaching flexible flaps at the exit of an unsteady starting jet, dramatic changes can be made to the flow field. The coupled kinematics of the flaps with the flow dynamics led to desirable changes in the flow. Although the flaps introduced in this work are idealized and may not represent the kind of flexibility we encounter in biological systems, it gives us a better understanding of the importance of exit flexibility in these kinds of flows.
|
160 |
Etude expérimentale et numérique de l'interaction aérodynamique entre deux profils : application au risque aéronautique du décrochage profond / Experimental and numerical study of the aerodynamic interaction between two airfoils : application to deep stall aeronautical hazardHetru, Laurent 16 November 2015 (has links)
Le décrochage profond est un cas particulier du décrochage d’un avion, où l'empennage horizontal est entièrement situé dans le sillage décollé de la voilure principale. Le plan perd ainsi son efficacité, ce qui se traduit par une position d'équilibre en tangage stable, à une incidence élevée, dont il est impossible de sortir par une manœuvre simple. L’objectif de cette étude est de caractériser l’aérodynamique associée à ce phénomène et de proposer une procédure d’identification et de récupération. Il est proposé une démarche visant à déterminer la dynamique bidimensionnelle de l’écoulement autour d’une configuration aéronautique de référence. Les coefficients aérodynamiques, obtenus dans une large plage d’incidence, mettent en évidence l’effet de l’interaction entre les profils sur le décrochage, qui impacte principalement le profil aval. L’analyse des champs de vitesse fournit l’étendue et l’évolution axiale des sillages des profils. Un traitement des champs de vitesse par moyennes de phase permet de reconstruire la dynamique temporelle. À partir de ces résultats, un modèle potentiel de forçage de l’écoulement autour du profil aval permet d’expliquer la modification du coefficient de portance imposé par l’interaction. Des simulations numériques de l’écoulement, qui fournissent des champs résolus en temps, permettent de retrouver certaines évolutions expérimentales. L’ensemble des résultats est utilisé, en parallèle à des données issues d’un aéronef réel, dans un modèle de vol longitudinal afin d’analyser le comportement dynamique de l’avion. Des critères permettant d’identifier la dynamique qui conduit à cet équilibre, fournissent une détection précoce de ce dernier. / Deep stall is a specific type of airplane stall, in which the horizontal tail is inside the detached wake of the main wing. The tail loses its efficiency, leading to a stable pitching equilibrium position with a high angle-of-attack, without any easy recovery procedure. The aim of the study is to characterize the aerodynamic associated to that phenomenon in order to propose an identification and recovery procedure. The approach consists in a two-dimensional flow characterization based on an aeronautical reference configuration. Aerodynamic coefficients, obtained for a wide range of angles-of-attack, show the interaction between the airfoils on the stall of the downstream airfoil. The analysis of velocity fields gives the width and the axial development of the airfoils wakes. Phase-averages of velocity fields lead to the synthesis of flow time-development. With these results, a potential model of flow forcing on the downstream airfoil explains the lift coefficient alteration imposed by the interaction. Flow numerical simulations, giving time-resolved fields, provide good accordance with experimental developments .The whole set of results is used, concurrently with real aircraft data, inside a longitudinal flight model in order to analyze the airplane dynamical behavior. Criteria for the identification of the dynamic leading to that equilibrium provide a rapid detection of deep stall and the implementation of a recovery strategy.
|
Page generated in 0.059 seconds