• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigation of Performance, Flow Interactions and Rotor Forcing in Axial Partial Admission Turbines

Fridh, Jens January 2012 (has links)
The thesis comprises a collection of four papers with preceding summary and supplementary appendices. The core investigation solely is of experimental nature although reference and comparisons with numerical models will be addressed. The first admission stage in an industrial steam turbine is referred to as the control stage if partial admission is applied. In order to achieve high part load efficiency and a high control stage output it is routinely applied in industrial steam turbines used in combined heat and power plants which frequently operate at part load. The inlet flow is individually throttled into separate annular arcs leading to the first stator row. Furthermore, partial admission is sometimes used in small-scale turbine stages to avoid short vanes/blades in order to reduce the impact from the tip leakage and endwall losses. There are three main aspects regarding partial admission turbines that need to be addressed. Firstly, there are specific aerodynamic losses: pumping-, emptying- and filling losses attributed to the partial admission stage. Secondly, if it is a multistage turbine, the downstream stages experience non-periodic flow around the periphery and circumferential pressure gradients and flow angle variations that produce additional mixing losses. Thirdly, the aeromechanical condition is different compared to full admission turbines and the forcing on downstream components is also circumferentially non-periodic with transient load changes. Although general explanations for partial admission losses exist in open literature, details and loss mechanisms have not been addressed in the same extent as for other sources of losses in full admission turbines. Generally applicable loss correlations are still lacking. High cycle fatigue due to unforeseen excitation frequencies or due to under estimated force magnitudes, or a combination of both causes control stage breakdowns. The main objectives of this thesis are to experimentally explore and determine performance and losses for a wide range of partial admission configurations. And, to perform a forced response analysis from experimental data for the axial test turbine presented herein in order to establish the forced response environment and identify particularities important for the design of control stages. Performance measurements concerning the efficiency trends and principal circumferential and axial pressure distortions demonstrate the applicability of the partial admission setup employed in the test turbine. Findings reveal that the reaction degree around the circumference varies considerably and large flow angle deviations downstream of the first rotor are present, not only in conjunction to the sector ends but stretching far into the admission sector. Furthermore, it is found that the flow capacity coefficient increases with reduced admission degree and the filling process locally generates large rotor incidence variation associated with high loss. Moreover, the off design conditions and efficiency deficit of downstream stages are evaluated and shown to be important when considering the overall turbine efficiency. By going from one to two arcs at 52.4% admission nearly a 10% reduction in the second stage partial admission loss, at design operating point was deduced from measurements. Ensemble averaged results from rotating unsteady pressure measurements indicate roughly a doubling of the normalized relative dynamic pressure at rotor emptying compared to an undisturbed part of the admission jet for 76.2% admission. Forced response analysis reveals that a large number of low engine order force impulses are added or highly amplified due to partial admission because of the blockage, pumping, loading and unloading processes. For the test turbine investigated herein it is entirely a combination of number of rotor blades and low engine order excitations that cause forced response vibrations. One possible design approach in order to change the force spectrum is to alter the relationship between admitted and non-admitted arc lengths. / Denna sammanläggningsavhandling består av fyra artiklar och föregås av en sammanfattning med kompletterande bilagor. Kärnan av undersökningen är experimentell även om referenser och jämförelser med numeriska modeller förekommer där så bedöms lämpligt. Det första steget i en industriell ångturbin kallas reglersteg om partialpådrag tillämpas. Det används rutinmässigt i kraftvärmeanläggningar som ofta körs vid dellaster för att åstadkomma en hög dellastverkningsgrad och hög stegeffekt. Inloppsflödet delas in separata och individuellt strypreglerade pådragsbågar som leder till det första munstycksgittret. Ibland används partialpådrag i små turbiner för att undvika korta blad och på så sätt minska takläckage och ändväggsförlusternas inflytande på den totala förlusten. Det finns i huvudsak tre aerodynamiska/aeromekaniska egenheter som bör beaktas. Först det första är det speciella aerodynamiska förluster associerade till partialpådrag eller reglersteget: ventilations-, tömnings och fyllningsförluster. För det andra, om det är en flerstegsturbin påverkas också nedströms steg negativt av det asymmetriska flödet runt omkretsen som innefattar stora tryckvariationer och flödesvinkelvariationer. För det tredje är den aeromekaniska situationen speciell jämfört med ett fullpådraget steg. För partialpådrag existerar dynamiska krafter med snabba laständringar vid in och utpassering i pådragsbågen. Även om det existerar generella förklaringar i den öppna litteraturen angående förluster så har inte förlustmekanismerna utretts i samma omfattning jämfört med fullpådrag. Ingen generell förlustkorrelation finns. Utmattning på grund oförutsedda excitationsfrekvenser, underskattade kraftamplituder eller en kombination av båda orsakar reglerstegshaveri för ångturbinintressenter. De huvudsakliga målsättningarna med denna studie är att experimentellt utforska och bestämma prestanda och förluster för ett stort antal partialpådragskonfigurationer. Samt att genomföra en vibrationsanalys (relaterat till aerodynamiska kraftimpulser) utifrån mätdata från provturbinen avhandlad häri. Detta för att kartlägga de aeromekaniska förutsättningarna och om möjligt identifiera egenheter viktiga för konstruktion av reglersteg. Prestandamätningar rörande verkningsgradstrender och generella strömningsvariationer runt omkretsen bekräftar resultat från den öppna litteraturen och därmed demonstrerar dugligheten av den partialpådragskonfiguration som används i luftprovturbinen. Dessutom visar resultaten bland annat att reaktionsgraden varierar kraftigt runt omkretsen med stora variationer i rotorns utloppsvinkel inte enbart i anslutning till sektorändar utan långt in i pådragssektorn. Flödeskapacitetskoefficienten eller turbinkonstanten ökar med minskat pådrag och fyllningsprocessen genererar stora variationer i rotorns inloppsvinkel förknippade med höga förluster. Det är viktigt att beakta dellastförutsättningarna och verkningsgradsminskningen för nedströms steg. Genom att använda två pådragsbågar istället för en för ett givet pådrag av 52,4% minskar partialpådragsförlusterna för nedströmssteget med nästan 10 % vid designpunkten, härlett från mätningar. Samlade medelvärden från roterande instationära mätningar visar på en fördubbling av det relativa dynamiska trycket vid rotortömning jämfört med en opåverkad del av pådragsbågen. Vibrationsanalys (relaterat till aerodynamiska kraftimpulser) av mätdata avslöjar att partialpådrag orsakar en stor mängd kraftimpulser med låga varvtalsmultiplar, främst från ventilationen och påavlastningsprocesserna. För provturbinen så är det helt och hållet kombinationer mellan antalet rotorblad och dessa kraftimpulser som orsakar strömningspåverkade vibrationer. Ett möjligt tillvägagångssätt konstruktionsmässigt för att ändra kraftspektrumet är att ändra längförhållandet mellan pådragen och blockerad del. / QC 20120109
2

Cavity Purge Flows in High Pressure Turbines

Dahlqvist, Johan January 2017 (has links)
Turbomachinery forms the principal prime mover in the energy and aviation industries. Due to its size, improvements to this fleet of machines have the potential of significant impact on global emissions. Due to high gas temperatures in stationary gas turbines and jet engines, areas of flow mixing and cooling are identified to benefit from continued research. Here, sensitive areas are cooled through cold air injection, but with the cost of power to compress the coolant to appropriate pressure. Further, the injection itself reduces output due to mixing losses.A turbine testing facility is center to the study, allowing measurement of cooling impact on a rotating low degree of reaction high pressure axial turbine. General performance, flow details, and cooling performance is quantified by output torque, pneumatic probes, and gas concentration measurement respectively. The methodology of simultaneously investigating the beneficial cooling and the detrimental mixing is aimed at the cavity purge flow, used to purge the wheelspace upstream of the rotor from hot main flow gas.Results show the tradeoff between turbine efficiency and cooling performance, with an efficiency penalty of 1.2 %-points for each percentage point of massflow ratio of purge. The simultaneous cooling effectiveness increase is about 40 %-points, and local impact on flow parameters downstream of the rotor is of the order of 2° altered turning and a Mach number delta of 0.01. It has also been showed that flow bypassing the rotor blading may be beneficial for cooling downstream.The results may be used to design turbines with less cooling. Detrimental effects of the remaining cooling may be minimized with the flow field knowledge. Stage performance is then optimized aerodynamically, mixing losses are reduced, and the cycle output is maximized due to the reduced compression work. The combination may be used to provide a significant benefit to the turbomachinery industry and reduced associated emissions. / Strömningsmaskinen i dess olika variationer bildar den främsta drivmotorn inom kraftproduktion och flygindustrin. En förbättring av denna väldiga maskinpark har potentialen till betydande inverkan på globala utsläpp. Områden som identifierats kunna dra nytta av vidare forskning är ombandningsprocesser och kylning. Dessa områden är inneboende i stationära gasturbiner och jetmotorer på grund av de heta gaser som används. Kylning uppnås genom injektion av kall luft i kritiska områden och försäkrar därmed säker drift. Kylningen kommer dock till en kostnad. På cykelnivå krävs arbete för att komprimera flödet till korrekt tryck. Dessutom medför injektionen i sig förluster som kan härledas till omblandningsprocessen. Syftet med detta arbete är att samtidigt undersöka de fördelaktiga kylegenskaperna som nackdelarna med inblandning för att på så sätt bestämma den uppoffring som måste göras för en viss kylning. Alla förbättringar tros dock inte behöva föregås av en uppoffring. Om påverkan av kylningen på huvudflödet är välförstådd kan designen justeras för att ta hänsyn till denna förändring och minimera inverkan. Denna metodologi riktar sig mot ett särskilt kylflöde, kavitetsrensningsflödet, som har till uppgift att avlägsna het luft från den kavitet som uppkommer uppströms rotorskivan i ett högtrycksturbinsteg. Studien kretsar kring en turbinprovanläggning som möjliggör detaljerade strömningsmätningar i ett roterande turbinsteg under inverkan av kavitetsrensningsflödet. Högtrycksturbinsteget som används för undersökningen är av låg reaktionsgrad. Här kvantifieras generell prestanda genom mätning av vridmomentet på utgående axel. Flödesfältet kvantifieras med pneumatiska sonder, och kylningsprestandan predikteras genom gaskoncentrationsmätningar. Resultaten visar avvägningen och sambandet mellan turbinverkningsgrad och kylning i kavitet samt huvudkanal. Flödet mäts i detalj, och de effekter som kan förväntas uppkomma då ett turbinsteg utsätts för en viss mängd av kylflödet kvantifieras. De kvantitativa resultaten för det undersökta steget visar på en förlust i verkningsgrad på 1.2 procentenheter för varje procentenhet av kavitetsrensningsflödet i termer om massflödesförhållande. Samtidigt ses kyleffektiviteten öka med 40 procentenheter. Den lokala inverkan på flödesfältet nedströms rotorn för det undersökta steget är 2° i flödesvinken och en ändring på 0.01 i Machnummer för varje procentenhet av kylflödet. Dessa ändringar ses i form av ökad omlänkning och reducerad hastighet nära hubben, och vice versa omkring halva spännvidden. Inverkan av aktuell driftpunkt understryks genom arbetet. Det har också visats att ett läckage som kringgår rotorbladen i vissa kan fall ge fördelaktig kylning i områden nedströms. Denna kombinerade kunskap kan användas för design av turbiner med så låg mängd kylning som möjligt samtidigt som säker drift bibehålls. Den negativa inverkan av den återstående kylningen kan minimeras genom kunskapen om hur flödesfältet påverkas. Genom detta optimeras stegverkningsgraden aerodynamiskt, omblandningsförluster minimeras, och cykeleffekten maximeras genom det minskade kompressionsarbetet till följd av de reducerade kylmängderna. Kombinationen kan ge en betydande förbättring för turbinindustrin och minskade utsläpp. / <p>QC 20171129</p>

Page generated in 0.0429 seconds