Spelling suggestions: "subject:"unsteady heat btransfer"" "subject:"unsteady heat cotransfer""
1 |
Steady and Unsteady Heat Transfer in a Film Cooled Transonic Turbine CascadePopp, Oliver 07 August 1999 (has links)
The unsteady interaction of shock waves emerging from the trailing edge of modern turbine nozzle guide vanes and impinging on downstream rotor blades is modeled in a linear cascade. The Reynolds number based on blade chord and exit conditions (5*10^6) and the exit Mach number (1.2) are representative of modern engine operating conditions. The relative motion of shocks and blades is simulated by sending a shock wave along the leading edges of the linear cascade instead of moving the blades through an array of stationary shock waves. The blade geometry is a generic version of a modern high turning rotor blade with transonic exit conditions. The blade is equipped with a showerhead film cooling scheme. Heat flux, surface pressure and surface temperature are measured at six locations on the suction side of the central blade. Pressure measurements are taken with Kulite XCQ-062-50a high frequency pressure transducers. Heat flux data is obtained with Vatell HFM-7/L high speed heat flux sensors. High speed heat flux and pressure data are recorded during the time of the shock impact with and without film cooling. The data is analyzed in detail to find the relative magnitudes of the shock effect on the heat transfer coefficient and the recovery temperature or adiabatic wall temperature (in the presence of film cooling).
It is shown that the variations of the heat transfer coefficient and the film effectiveness are less significant than the variations of recovery temperature. The effect of the shock is found to be similar in the cases with and without film cooling. In both cases the variation of recovery temperature induced by the shock is shown to be the main contribution to the overall unsteady heat flux.
The unsteady heat flux is compared to results from different prediction models published in the literature. The best agreement of data and prediction is found for a model that assumes a constant heat transfer coefficient and a temperature difference calculated from the unsteady surface pressure assuming an isentropic compression. / Ph. D.
|
2 |
Boiling heat transfer of multiple impinging water jets on a hot rotary cylinderUriarte, Aitor January 2021 (has links)
Quenching technique is widely used in industrial applications as it enhances the mechanical properties of metals such as hardness and tensile strength. This technique consists of a heating process followed by fast cooling which results in different microstructures that enhance the metal behavior. Current competitive market in metal field requires the implementation of advanced and optimizing techniques by means of efficient and sustainable quenching techniques. Furthermore, cooling by multiple array of water jets offers wide range of cooling rate control and consequently the achievement of the desired properties. Quenching cooling rate for a rotary cylinder by multiple impinging jets is investigated in this experimental study. A rotating steel cylinder is heated up to 700°C by an induction heater and cooled down in short time by an array of water impinging jets in order to study quenching process of the test specimen by the impinging jet technique. This fast cooling has been found to be a crucial parameter that enhances the characteristics of steel thoroughly. The magnitude of its influence has been previously studied in water pools cooling techniques. Consequently, a further understanding of quenching technique is aimed in this study by the variation of different parameters: the multiple jet’s pattern (inline and staggered), jet-to-jet spacing (S/d=4 and 6), rotational speed (10-70rpm) and water subcooling temperature (55-85K) that have been studied in 10 experiments. Running of the experiments have been done with the help of different programs such as LabVIEW and NiMAX. Measurements of the temperature along the cylinder has been carried out by using some embedded thermocouples that have been connected to the DAQ. Results from the study revealed faster cooling with rotation speed 30rpm since the contact between hot surface and impinged water jet is improved for lower speeds. However, rotation speed10rpm results experienced negative effects. In addition, jet-to-jet spacing S/d = 4 caused higher cooling rate than S/d = 6 since the impinged water from neighbor jets lead to higher interaction between water fronts and consequently a more uniform cooling. Furthermore, significant differences have been found in temperature drop between points located closer to the center of the cylinder and the ones beneath the cooling surface. Regarding the multiple array configuration of nozzles, staggered configuration revealed more uniform cooling over the surface due to the fact that placement of the jets led to a better distribution of the impinged water in the measurement line. The effect of higher subcooling temperature in agreement with previous studies results in which higher cooling rate and more drastic temperature drop. The aim of this study is to make a better understanding of the multiple water impinging jets quenching technique in order to make further research in the area of enhancing the mechanical properties of steel by understanding effect of the quenching parameters and their characteristics in order to optimize the quenching technique for different applications.
|
3 |
Wall-temperature effects on flame response to acoustic oscillationsMejia, Daniel 20 May 2014 (has links) (PDF)
Combustion instabilities, induced by the resonant coupling of acoustics and combustion occur in many practical systems such as domestic boilers, gas turbine and rocket engines. They produce pressure and heat release fluctuations that in some extreme cases can provoke mechanical failure or catastrophic damage. These phenomena have been extensively studied in the past, and the basic driving and coupling mechanisms have already been identified. However, it is well known that most systems behave differently at cold start and in the permanent regime and the coupling between the temperature of the solid material and combustion instabilities still remains unclear. The aim of this thesis is to study this mechanism.
This work presents an experimental investigation of combustion instabilities for a laminar premixed flame stabilized on a slot burner with controlled wall temperature. For certain operating conditions, the system exhibits a combustion instability locked on the Helmholtz mode of the burner. It is shown that this instability can be controlled and even suppressed by changing solely the temperature of the burner rim. A linear stability analysis is used to identify the parameters playing a role in the resonant coupling and retrieves the features observed experimentally. Detailed experimental studies of the different elementary processes involved in the thermo-acoustic coupling are used to evaluate the sensitivity of these parameters to the wall temperature. Finally a theoretical model of unsteady heat transfer from the flame root to the burner-rim and detailed experimental measurements permit to establish the physical mechanism for the temperature dependance on the flame response.
|
4 |
Pastato aktyviosios šiluminės talpos įtaka patalpų mikroklimatui bei energijos poreikiams / Influence of active heat capacity on microclimate and energy demand of a buildingValančius, Kęstutis 22 March 2007 (has links)
The main aim of the work is to investigate unsteady indoor thermal factors’ influence on premises microclimate, energy demand and installed heat power. Tasks of the work: 1. To investigate evaluation methods of thermal characteristics of a building which have influence on unsteady heat transfer, and to point out the main and determining factors. 2. To investigate dynamic thermal characteristics of a building in an experimental way. 3. To describe unsteady heat transfer processes in buildings on the basis of energy conservation law for a control volume with the help of active heat capacity conception and to adapt calculation methods for practical use. 4. To estimate the influence of active heat capacity on premises microclimate, design heat power and energy use.
|
5 |
3-D Unsteady Simulation of a Modern High Pressure Turbine Stage: Analysis of Heat Transfer and FlowShyam, Vikram January 2009 (has links)
No description available.
|
6 |
Effets de la température de paroi sur la réponse de la flamme à des oscillations acoustiques / Wall-temperature effects on flame response to acoustic oscillationsMejia, Daniel 20 May 2014 (has links)
Les instabilités de combustion induites par le couplage combustion-acoustique se produisent dans de nombreux systèmes industriels et domestiques tels que les chaudières, les turbines à gaz et les moteurs de fusée. Ces instabilités se traduisent par des fluctuations de pression et un dégagement de chaleur qui peuvent provoquer une défaillance mécanique ou des dégâts désastreux dans certains cas extrêmes. Ces phénomènes ont été largement étudiés par le passé, et les mécanismes responsables du couplage ont déjà été identifiés. Cependant, il apparaît que la plupart des systèmes se comportent différemment lors du démarrage à froid ou en régime permanent. Le couplage entre la température des parois et les instabilités de combustion reste encore méconnu et n’a pas été étudié en détail jusqu’à présent. Dans le cadre de ces travaux de thèse, on s’intéresse à ce mécanisme. Ces travaux présentent une étude expérimentale des instabilités de combustion pour une flamme laminaire de pré-mélange stabilisée sur un brûleur à fente. Pour certaines conditions de fonctionnement, le système présente un mode instable autour du mode de Helmholtz du brûleur. Il est démontré que l’instabilité peut être contrôlée, et même supprimée, en changeant uniquement la température de la surface du brûleur. Une analyse de stabilité linéaire peut être mise en œuvre afin d’identifier les paramètres jouant un rôle dans les mécanismes d’instabilité, et il est possible de modéliser analytiquement les phénomènes observés expérimentalement. Des études expérimentales détaillées de différents processus élémentaires impliqués dans le couplage thermo-acoustique ont été menées pour évaluer la sensibilité de ces paramètres à la température de la paroi. Enfin un modèle théorique du couplage entre le transfert de chaleur instationnaire à la paroi et la fluctuation du pied de flamme a été proposé. Par ailleurs, d’autres mesures expérimentales ont permis de comprendre les mécanismes physiques responsables de la dépendance de la réponse de la flamme à la température de paroi. / Combustion instabilities, induced by the resonant coupling of acoustics and combustion occur in many practical systems such as domestic boilers, gas turbine and rocket engines. They produce pressure and heat release fluctuations that in some extreme cases can provoke mechanical failure or catastrophic damage. These phenomena have been extensively studied in the past, and the basic driving and coupling mechanisms have already been identified. However, it is well known that most systems behave differently at cold start and in the permanent regime and the coupling between the temperature of the solid material and combustion instabilities still remains unclear. The aim of this thesis is to study this mechanism. This work presents an experimental investigation of combustion instabilities for a laminar premixed flame stabilized on a slot burner with controlled wall temperature. For certain operating conditions, the system exhibits a combustion instability locked on the Helmholtz mode of the burner. It is shown that this instability can be controlled and even suppressed by changing solely the temperature of the burner rim. A linear stability analysis is used to identify the parameters playing a role in the resonant coupling and retrieves the features observed experimentally. Detailed experimental studies of the different elementary processes involved in the thermo-acoustic coupling are used to evaluate the sensitivity of these parameters to the wall temperature. Finally a theoretical model of unsteady heat transfer from the flame root to the burner-rim and detailed experimental measurements permit to establish the physical mechanism for the temperature dependance on the flame response.
|
7 |
Fluxmétrie et caractérisation thermiques instationnaires des dépôts des composants face au plasma du Tokamak JET par techniques inverses / Measurement of powerflux and thermal characterization of deposits in non-stationary conditions on plasma facing components of the JET Tokamak by inverse methodsGaspar, Jonathan 27 September 2013 (has links)
Ces travaux portent sur la résolution successive de deux problèmes inverses en transferts thermiques : l'estimation de la densité de flux en surface d'un matériau puis de la conductivité thermique équivalente d'une couche déposée en surface de ce matériau. Le modèle direct est bidimensionnel orthotrope (géométrie réelle d'un matériau composite), instationnaire, non-linéaire et ses équations sont résolues par éléments finis. Les matériaux étudiés sont les composants face au plasma (tuiles composite carbone-carbone) dans le Tokamak JET. La densité de flux recherchée varie avec une dimension spatiale et avec le temps. La conductivité du dépôt de surface varie spatialement et peut également varier au cours du temps pendant l'expérience (toutes les autres propriétés thermophysiques dépendent de la température). Les deux problèmes inverses sont résolus à l'aide de l'algorithme des gradients conjugués associé à la méthode de l'état adjoint pour le calcul exact du gradient. La donnée expérimentale utilisée pour la résolution du premier problème inverse (estimation de flux surfacique) est le thermogramme fourni par un thermocouple enfoui. Le second problème inverse utilise, lui, les variations spatio-temporelles de la température de surface du dépôt inconnu (thermographie infrarouge) pour identifier sa conductivité. Des calculs de confiance associée aux grandeurs identifiées sont réalisés avec la démarche Monte Carlo. Les méthodes mises au point pendant ces travaux aident à comprendre la dynamique de l'interaction plasma-paroi ainsi que la cinétique de formation des dépôts de carbone sur les composants et aideront au design des composants des machines futures (WEST, ITER). / This work deals with the successive resolution of two inverse heat transfer problems: the estimation of surface heat flux on a material and equivalent thermal conductivity of a surface layer on that material. The direct formulation is bidimensional, orthotropic (real geometry of a composite material), unsteady, non-linear and solved by finite elements. The studied materials are plasma facing components (carbon-carbon composite tiles) from Tokamak JET. The searched heat flux density varies with time and one dimension in space. The surface layers conductivity varies spatially and can vary with time during the experiment (the other thermophysical properties are temperature dependent). The two inverse problems are solved by the conjugate gradient method with the adjoint state method for the exact gradient calculation. The experimental data used for the first inverse problem resolution (surface heat flux estimation) is the thermogram provided by an embedded thermocouple. The second inverse problem uses the space and time variations of the surface temperature of the unknown surface layer (infrared thermography) for the conductivity identification. The confidence calculations associated to the estimated values are done by the Monte Carlo approach. The method developed during this thesis helps to the understanding of the plasma-wall interaction dynamic, as well as the kinetic of the surface carbon layer formation on the plasma facing components, and will be helpful to the design of the components of the future machines (WEST, ITER).
|
Page generated in 0.0826 seconds