• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 24
  • 24
  • 16
  • 11
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tip Leakage Flow Downstream a Compressor Cascade with Moving End Wall

Wang, Yu 17 April 2000 (has links)
A large-scale moving end-wall system has been designed and built at the Aerospace and Ocean Engineering Department of Virginia Tech. This system forms part of a low-speed linear compressor cascade wind tunnel, where it is used to simulate the effects of the relative motion between the blade tips and casing upon the flow. Detailed 4-sensor hot wire measurements were made at various locations downstream the cascade. The results are presented in term of mean flow field and turbulence flow field. In order to reveal the effects of moving end wall, the results also compared with the results obtained with stationary end wall. / Master of Science
2

Reynolds-Averaged Navier-Stokes Computation of Tip Clearance Flow in a Compressor Cascade Using an Unstructured Grid

Shin, Sangmook 14 September 2001 (has links)
A three-dimensional unstructured incompressible RANS code has been developed using artificial compressibility and Spalart-Allmaras eddy viscosity model. A node-based finite volume method is used in which all flow variables are defined at the vertices of tetrahedrons in an unstructured grid. The inviscid fluxes are computed by using the Roe's flux difference splitting method, and higher order accuracy is attained by data reconstruction based on Taylor series expansion. Gauss theorem is used to formulate necessary gradients. For time integration, an implicit scheme based on linearized Euler backward method is used. A tetrahedral unstructured grid generation code has been also developed and applied to the tip clearance flow in a highly staggered cascade. Surface grids are first generated in the flow passage and blade tip by using several triangulation methods including Delaunay triangulation, advancing front method and advancing layer method. Then the whole computational domain including tip gap region is filled with prisms using the surface grids. Each prism is divided into three tetrahedrons. To accomplish this division in a consistent manner, connectivity pattern is assigned to each triangle in the surface grids. A new algorithm is devised to assign the connectivity pattern without reference to the particular method of triangulation. This technique offers great flexibility in surface grid generation. The code has been validated by comparisons with available computational and experimental results for several test cases: invisicd flow around NACA section, laminar and turbulent flow over a flat plate, turbulent flow through double-circular arc cascade and laminar flow through a square duct with 90° bend. For the laminar flat plate case, the velocity profile and skin friction coefficient are in excellent agreement with Blasius solution. For the turbulent flat plate case, velocity profiles are in full agreement with the law of the wall up to Reynolds number of 1.0E8, however, the skin friction coefficient is under-predicted by about 10% in comparison with empirical formula. Blade loading for the two-dimensional circular arc cascade is also compared with experiments. The results obtained with the experimental inflow angle (51.5° ) show some discrepancies at the trailing edge and severely under-predict the suction peak at the leading edge. These discrepancies are completely remedied if the inflow angle is increased to 53.5° . The code is also capable of predicting the secondary flow in the square duct with 90° bend, and the velocity profiles are in good agreement with measurements and published Navier-Stokes computations. Finally the code is applied to a linear cascade that has GE rotor B section with tip clearance and a high stagger angle of 56.9° . The overall structure of the tip clearance flow is well predicted. Loss of loading due to tip leakage flow and reloading due to tip leakage vortex are presented. On the end wall, separation line of the tip leakage vortex and reattachment line of passage vortex are identified. The location of the tip leakage vortex in the passage agrees very well with oil flow visualization. Separation bubble on the blade tip is also predicted. Mean streamwise velocity contours and cross sectional velocity vectors are compared with experimental results in the near wake, and good agreements are observed. It is concluded that Spalart-Allmaras turbulence model is adequate for this type of flow field except at locations where the tip leakage vortex of one blade interacts with the wake of a following blade. This situation may prevail for blades with longer span and/or in the far wake. Prediction of such an interaction presents a challenge to RANS computations. The effects of blade span on the flow structure have been also investigated. Two cascades with blades of aspect ratios of 0.5 and 1.0 are considered. By comparing pressure distributions on the blade, it is shown that the aspect ratio has strong effects on loading distribution on the blade although the tip gap height is very small (0.016 chord). Grid convergence study has been carried out with three different grids for pressure distributions and limiting streamlines on the end wall. / Ph. D.
3

Establishing a methodology to investigate factors that affect Tip Leakage Loss : In a small scale Organic Rankine Cycle (ORC) turbine

Kaushik, Anand Ashok January 2022 (has links)
With growing awareness and necessity for the world to move towards more sustainable (energy saving) forms of power generation, focus on the commercial use of Organic Rankine Cycle (ORC) turbine systems has subsequently increased in turn. ORC systems with their modular design can thus help in recovering heat, obtained as a byproduct from a variety of industrial processes, and thereby increase their overall system efficiency. As with conventional turbine systems, methods to improve their performance is an avenue that is still being actively researched on today. The various sources of losses in a turbine have thus been looked into, while prioritizing the literature study to factors that result in losses associated with the leakage flow over the blade tip. The purpose of this study is to develop a working methodology to investigate factors that affect the tip leakage loss in a small scale ORC turbine. The model and associated data used for comparison is based on an existing system, whose design has been provided by Againity AB, with the subsequent simulations carried out using Ansys CFX.
4

Study of tip clearance flows

Fournis, Camille January 2018 (has links)
The tip leakage vortex is responsible for the generation of stagnation pressure losses inside the compressor along with the outbreak of rotating stall and surge. The current paper analytically proved that a part of the losses is proportional to the vortex circulation squared. The evolution of this circulation has been investigated as part of a parametric study which tested several clearance heights. The work consists in adopting a simplified single blade configuration to study the physics of the flow by means of wind tunnel experiments and numerical calculations. Upon visualising the main features of the flow, a model based on the study of jet in crossflows was implemented to describe the tip clearance flow for small gap sizes. For big gaps, the flow is assumed to behave as an isolated wing tip vortex which circulation is easily computed by the so called lifting line theory. The main vortical structures highlighted by the topology of the flow justified the use of the model of a jet in crossflow for small gap sizes. This model was challenged by experimental and numerical data and proved to well predict the evolution of the clearance vortex circulation for an increasing clearance height although some numerical results remain further away from the model. / Gapvirveln är ansvarig för lufttryckförluster i motorn av ett flygplan och kan orsaka utbrottet av kompressorstall och pumpning. Artikeln bevisade matematiskt att en del av de här förlusterna är proportionell mot gapvirvelncirkulationen upphöjd. Utvecklingen av den där cirkulationen undersöktes med hjälp av en parametrisk studie som provkörde flera gapstorlekar. Arbetet bestå av att adoptera en förenklad enda blad konfiguration för att studera flödes fysik med vindtunnel experiment och flödesberäkningar. Efter att man analyserar flödes viktigaste egenskaper genomfördes en modell baserad på studien av en jet i ett korsflöde. Den här modellen används för att beskriva flödet för små gapstorlekar. För stora gap antar man att flödet beter sig som en vingspetsvirvel som cirkulationen kan beräknas utan svårighet med hjälp av lyftledningsteorin. Flödes topologi visualiserades tack vare numeriska beräkningar och legitimerade användningen av modellen av en jet i ett korsflöde för små gapstorlekar. Teoretiska, experimentella och numeriska resultat jämfördes och bevisade att modellen väl förutsäger utvecklingen av gapvirvelncirkulationen mot gapstorlek även om några numeriska resultat är långt från modellen.
5

Unsteady Turbulence Interaction in a Tip Leakage Flow Downstream of a Simulated Axial Compressor Rotor

Ma, Ruolong 22 July 2003 (has links)
The unsteady behavior of a tip leakage flow downstream of a simulated axial compressor rotor has been studied. The Virginia Tech low speed linear cascade wind tunnel was adapted to model the unsteady tip leakage flow produced by a rotor operating in the vortical wakes of a set of stator vanes. The cascade, consisting of 8 GE rotor B blades, has adjustable tip gap, inlet angle of 65.1 degrees, turning angle of 11.8 degrees and solidity of 1.076. The cascade Reynolds number, based on blade chord, was 393,000. A moving end wall was used to simulate the relative motion between rotor and casing, and vortex generators attached to the moving end wall were used to produce an idealized periodic unsteady vortical inflow similar to that shed by the junction of a row of inlet guide vanes. Measurements of the vortical inflow to the cascade produced by the generators and of the mean blade loading at the mid span are presented. The periodic and aperiodic behavior of the tip leakage flow downstream of the cascade, produced by this vortical disturbance, is also presented using phase and time averaged 3-component turbulence and pressure fluctuation measurements. These measurements are made for tip gap from 0.83% to 3.3% chord and streamwise locations from 0.772% to 1.117% blade spacing axially downstream of the cascade. The phase averaged inflow measurements reveal that the inflow produced by the vortex generators consists of a pair asymmetric counter-rotating vortices embedded in a thin (4.6% chord) endwall boundary layer. The vortices extend some 7.4% chord from the end wall. Their strength is about two orders smaller than the typical circulation of the tip leakage vortices produced by the cascade. Phase averaged single point three component hot-wire measurements downstream of the cascade reveal that the vortical inflow is, however, capable of producing significant large scale fluctuations in the size, strength, structure and position of the tip leakage vortex. These effects increase in magnitude with increase of tip gap. For small tip gaps these effects appear to be due to simple superposition between the inflow vortices and the tip leakage vortex. However for larger tip gaps these effects appear primarily a consequence of the inflow vortices interfering with the shedding of circulation from the blade tip. The fact that the circulation fluctuation is consistent with the inviscid unsteady loading prediction suggests that the inviscid response may be a major mechanism for generating the tip leakage unsteadiness. Although there is large periodic fluctuation in the tip leakage flow disturbed by the inflow, there is a larger aperiodic component. Two point correlation measurements and linear stochastic estimation are used to reveal the structure of this aperiodic part for a tip gap of 3.3% chord. The aperiodic fluctuation, containing most of the turbulence energy, is found appearing to be organized structures in large scale, and making the estimated instantaneous velocity field significantly different from the phase averaged periodic velocity field. Phase averaged pressure fluctuation measurements made using a microphone in the tip leakage vortex downstream of the cascade reveal that there are significant periodic fluctuating pressure waves and intense mean square fluctuation of the aperiodic fluctuating pressure. They are consistent with the measured periodic flow and aperiodic flow field respectively. These microphone measurements are validated using fluctuating pressure gradient estimates determined from the hot-wire measurements. / Ph. D.
6

Formation and Development of the Tip Leakage Vortex in a Simulated Axial Compressor with Unsteady Inflow

Intaratep, Nanyaporn 28 April 2006 (has links)
The interaction between rotor blade tip leakage vortex and inflow disturbances, such as encountered in shrouded marine propulsors, was simulated in the Virginia Tech Linear Cascade Wind Tunnel equipped with a moving endwall system. Upstream of the blade row, idealized periodic inflow unsteadiness was generated using vortex generator pairs attached to the endwall at the same spacing as the blade spacing. At three tip gap settings, 1.7%c, 3.3%c and 5.7%c, the flow near the lower endwall of the center blade passage was investigated through three-component mean velocity and turbulence distributions measured by four-sensor hotwires. Besides time-averaged data, the measurements were processed for phase-locked analysis, with respect to pitchwise locations of the vortex generators relative to the blade passage. Moreover, surface pressure distributions at the blade tip were acquired at eight tip gaps from 0.87%c to 12.9%c. Measurements of pressure-velocity correlation were also performed with wall motion but without inflow disturbances. Achieved in this study is an understanding of the characteristics and structures of the tip leakage vortex at its initial formation. The mechanism of the tip leakage vortex formation seems to be independent of the tip gap setting. The tip leakage vortex consists of a vortical structure and a region of low streamwise-momentum fluid next to the endwall. The vortical structure is initially attached to the blade tip that creates it. This structure picks up circulation shed from that blade tip, as well as those from the endwall boundary layer, and becomes stronger with downstream distance. Partially induced by the mirror images in the endwall, the vortical structure starts to move across the passage resulting in a reduction in its rotational strength as the cross sectional area of the vortex increases but little circulation is added. The larger the tip gap, the longer the vortical structure stays attached to the blade tip, and the stronger the structure when it reaches downstream of the passage. Phased-averaged data show that the inflow disturbances cause small-scale responses and large-scale responses upstream and downstream of the vortex shedding location, respectively. This difference in scale is possibly dictated by a variation in the shedding location since the amount of circulation in the vortex is dependent on this location. The inflow disturbances possibly cause a variation in the shedding location by manipulating the separation of the tip leakage flow from the endwall and consequently the flow's roll-up process. Even though this manipulation only perturbs the leakage flow in a small scale, the shedding mechanism of the tip leakage vortex amplifies the outcome. / Ph. D.
7

Evaluation of the ZDES method on an axial compressor : analysis of the effects of upstream wake and throttle on the tip-leakage flow. / Evaluation de la méthode ZDES sur un compresseur axial : analyse des effets de sillages venant de l’amont et du vannage sur le tourbillon de jeu

Riera, William 27 November 2014 (has links)
L’écoulement de jeu dans les compresseurs axiaux est étudié à l’aide de la Zonal Detached Eddy Simulation (ZDES). L’objectif consiste à évaluer la capacité de méthodes hybrides URANS/LES à simuler l’écoulement de jeu d’un compresseur axial réaliste afin de mieux comprendre la physique de cet écoulement, notamment son comportement au vannage ainsi que l’effet de sillages venant du stator amont sur le rotor aval. Après avoir choisi la méthode hybride ZDES, un banc d’essai numérique est défini afin de simuler le premier rotor du compresseur de recherche CREATE. Ce banc a la particularité de pouvoir prendre en compte les effets instationnaires venant de la roue directrice d’entrée (RDE), notamment son sillage ainsi que les tourbillons générés en pied et en tête. Basé sur des critères de maillage ZDES, il est utilisé pour évaluer cette méthode comparativement aux méthodes classiques RANS et URANS. La ZDES est validée par étape jusqu’à une analyse spectrale de l’écoulement de jeu se basant sur des données expérimentales. Elle s’est révélée capable de capturer plus précisément l’intensité et la position des phénomènes instationnaires rencontrés en tête du rotor, notamment le tourbillon de jeu. Les densités spectrales de puissance analysées montrent que cela est dû en partie à une meilleure prise en compte du transfert d’énergie des grandes vers les petites structures de l’écoulement avant leur dissipation. De plus, l’écart entre les approches s’accentue lorsque le tourbillon de jeu traverse le choc en tête. Proche pompage, les effets d’interaction entre le choc, le tourbillon de jeu, la couche limite carter et le tourbillon venant de la tête de la RDE sont amplifiés. Le décollement de la couche limite carter s’accentue et une inversion locale de l’écoulement est observée. De plus, le tourbillon de jeu s’élargit et est dévié vers la pale adjacente, ce qui intensifie le phénomène de double écoulement de jeu. L’interaction du tourbillon venant de la tête de la RDE avec le choc et le tourbillon de jeu du rotor est ensuite étudiée au point de dessin. Un battement du tourbillon de jeu est rencontré lors de l’interaction de ce tourbillon avec le tourbillon de tête de la RDE, ce qui diminue le double écoulement de jeu. / The tip-leakage flow in axial compressors is studied with the Zonal Detached Eddy Simulation (ZDES). This study aims at evaluating the capability of hybrid URANS/LES methods to simulate the tip-leakage flow within a realistic axial compressor in order to better understand the involved physics, especially the behaviour of the flow near surge and the effects of stator wakes on the downstream rotor. Once the ZDES method is chosen, a numerical test bench is defined to simulate the first rotor of the research compressor CREATE. This bench takes into account the unsteady effects of the Inlet Guide Vane (IGV), such as its wake as well as vortices generated at the IGV hub and tip. It is based upon ZDES meshing criteria and is used to evaluate this method compared to classic RANS and URANS approaches. A method validation is carried out up to a spectral analysis compared to experimental data. The ZDES is capable to capture more accurately the intensity and position of the unsteady phenomena encountered in the tip region, especially the tip-leakage vortex. The power spectral densities highlight that this partly originates from a better capture of the energy transfer from large to small structures until their dissipation. The discrepancy between the methods is accentuated as the tip-leakage vortex crosses the shock. Near the surge line, the interactions between the shock, the tip-leakage vortex, the boundary layer developing on the shroud and the vortex generated by the IGV tip are amplified. The boundary layer on the shroud separates earlier and a local flow inversion occurs. Besides, the tip-leakage vortex widens and is deflected toward the adjacent blade. This strengthens the double leakage. At the design operating point, the interaction of the IGV tip vortex with the shock and the rotor tip vortex is studied. A vortex flutter is observed as the IGV tip vortex arrives on the rotor blade and stretches the rotor tip vortex. This phenomenon decreases the double leakage.
8

HYBRID RANS-LES STUDY OF TIP LEAKAGE FLOW IN A 1.5 STAGE TURBINE

Adwiteey Raj Shishodia (19339674) 06 August 2024 (has links)
<p dir="ltr">Gas turbines are widely used to provide propulsion, electrical-power, and mechanical power. Though tremendous advances have been made since Frank Whittle’s patent of a turbojet in 1930 and Hans von Ohain’s patent of the first operational turbojet in 1936, industry still has aggressive goals on improvements in efficiency and service life. One area where further advances are needed is better control of the flow across the gap between the blade tip and the shroud, referred to as tip-leakage flow (TLF). This is because TLF accounts for up to one-third of the aerodynamic losses in a turbine stage.</p><p dir="ltr">In this study, hybrid LES-RANS based on IDDES and steady RANS based on the SST turbulence model were used to study the compressible flow in a 1.5-stage turbine with geometry and operating conditions that are relevant to power-generation gas turbines. The focus is on the flow in the tip-gap region that account for the flow features created by the upstream stator vanes, stator-rotor interactions, and downstream stator vanes. Results obtained reveal the flow structures about the tip-gap region and the flow mechanisms that create them. Results obtained also show where steady RANS with mixing plane could predict correctly when compared with results from IDDES that resolve the unsteadiness of the turbulence and the motion of the rotor blades passing the stator vanes. Turbulent statistics from the IDDES were generated to guide the development of better RANS models. Results were also obtained by using RANS to examine the effects of blade loading, where mass flow rate through the 1.5 stage turbine was varied with the rotor’s rotational speed fixed at 3,600 RPM – the speed at which power-generation gas turbines operate in the U.S.</p><p dir="ltr">Key findings are as follows: In the first-stage stator, horseshoe, passage, and corner vortices were found to be confined within 10 to 15% span from the hub and shroud, and both steady RANS and IDDES generated similar results. Steady RANS and IDDES, however, differed considerably in how they predicted the wake downstream of the vane’s trailing edge. This coupled with the use of mixing plane, steady RANS was unable to account for effects of stator-rotor interactions and their effects on the tip-leakage flow. In the rotor, steady RANS predicted passage vortices that extended up to 50% span from the hub and 25% span from the shroud. The flow through the tip gap was found to induce a separation bubble on the blade tip and one large and two small vortical structures on the suction side of the blade and a vortical structure next to the shroud. These structures were found to grow along the axial chord of the blade. Steady RANS also predicted the large tip leakage vortex that contained the fluid from the tip-leakage flow to breakdown. IDDES did not predict the vortex breakdown because all of the coherent vortical structures identified including the separated region on the blade tip were unsteady and constantly shedding. As a result, IDDES predicted much smaller mean passage vortices – albeit the instantaneous structures were nearly as large as those predicted by steady RANS.</p>
9

High frequency gas temperature and surface heat flux measurements

Iliopoulou, Vasiliki 14 September 2005 (has links)
Further improvements of the thermal efficiency of gas turbine cycle are closely coupled to the increase of turbine inlet temperature. This requires intensive and efficient cooling of the blades. In this perspective, experimental investigations of the gas temperature and heat transfer distribution around the airfoil are of primary importance. The present work aims at the development of two measurement techniques based on applications of the thin film sensors: the two-layer gauge for the wall heat transfer determination and the dual thin film probe for flow temperature measurements. Both techniques are used in short duration tunnels of the von Karman Institute (VKI) under engine representative conditions and are able to resolve both time-averaged component and time-resolved component i.e. periodic blade passing events at ~5-7 kHz with harmonics up to 50 kHz. In order to derive the wall heat flux with the two-layer gauge, the unsteady conduction equation is solved in the two-layer substrate using the measured value of the wall temperature as a boundary condition. The gauges are extensively calibrated and the data reduction method is validated on a blade of the second stator of the VKI turbine. A very good repeatability is achieved. Measurements are also performed on the complex geometry of a blade tip in a cascade configuration revealing the high three dimensionality of the flow. The dual thin film probe combines the operation of two thin films and determines the flow temperature from two independent heat flux measurements. The probe is calibrated and then validated with measurements downstream a cascade. The robustness and the reliability of the probe are also demonstrated by measurements downstream of the rotor and the second stator of the VKI turbine.
10

Experimental Investigation Of The Effects Of Waveform Tip Injection On The Characteristics Of Tip Leakage Vortex In A Lpt Cascade

Mercan, Bayram 01 February 2012 (has links) (PDF)
This study presents the results of an experimental study that investigates the effects of uniform/waveform tip injection along the camberline on the total pressure loss characteristics downstream of a row of Low Pressure Turbine (LPT) blades. The experiments are performed in a low speed cascade facility. This injection technique involves spanwise jets at the tip that are issued from a series of holes along the camber line normal to the freestream flow direction. The injection mass flow rate from each hole is individually controlled using computer driven solenoid valves and therefore the flow injection geometrical pattern at the tip can be adjusted to any desired waveform shape, and can be uniform as well as waveform along the camber. Measurements involve Kiel probe traverses for different injection scenarios 0.5 axial chords downstream of the blades. Results show that, instead of performing uniform mass injection along the camberline, by selecting an appropriate waveform injection pattern one can reduce the total loss levels of the blade, including the tip leakage loss as well as the wake losses.

Page generated in 0.0508 seconds