1 |
Tip Leakage Flow Downstream a Compressor Cascade with Moving End WallWang, Yu 17 April 2000 (has links)
A large-scale moving end-wall system has been designed and built at the Aerospace and Ocean Engineering Department of Virginia Tech. This system forms part of a low-speed linear compressor cascade wind tunnel, where it is used to simulate the effects of the relative motion between the blade tips and casing upon the flow. Detailed 4-sensor hot wire measurements were made at various locations downstream the cascade. The results are presented in term of mean flow field and turbulence flow field. In order to reveal the effects of moving end wall, the results also compared with the results obtained with stationary end wall. / Master of Science
|
2 |
Trailing-Edge Blowing of Model Fan Blades for Wake ManagementCraig, Margaret Elizabeth 20 January 2006 (has links)
Model fan blades designed to implement the wake management technique of trailing-edge blowing were tested in a linear cascade configuration. Measurements were made on two sets of blowing blades installed in the Virginia Tech low-speed linear cascade wind tunnel. The simple blowing blades were identical to the baseline GE Rotor B blades, aside from a slight difference in trailing-edge thickness, a set of internal flow passages, and a blowing slot just upstream of the trailing-edge on the suction side of the blade. The Kuethe vane blades were also slightly thicker at the trailing-edge, and had a set of nine evenly spaced vortex generators upstream of the blowing slot on the suction side. The cascade tunnel accommodates eight blades with adjustable tip-gap heights, although only the center four blades were replaced by blowing blades in this study. The tunnel has an inlet angle of 65.1â a, a stagger angle of 56.9â a and a flow turning angle of 11.8â a. The tip-gap was set to 0.004125c and the freestream velocity of 24.7m/s led to a Reynolds number based on the chord of 385,000.
Blowing slot uniformity measurements made with a single hot-wire immediately behind the trailing-edge revealed that the blowing becomes more spanwise uniform as blowing rate is increased. The same occurs with the Kuethe vane blades, despite a spanwise serrated pattern that appears as a result of the upstream vortex generators.
Cross-sections made perpendicular to the blade span gave preliminary evidence that the simple blowing wake deficit increases from the passive suction case at a blowing rate of 1.4% and becomes overblown by 2.6%. The Kuethe vane wake deficit does not increase at low blowing rates. Both sets of blowing blades indicated a slight angling of the wake towards the pressure side with blowing.
Pitot-static full cross-sections of the simple blowing blades at x/ca = 0.839 and 1.877 verified the increase in wake depth and width at 1.4% as compared to the passive suction and non-blowing baseline cases, and the wake overblowing that occurs as blowing rate is increased to approximately 2.6%. The Kuethe vane blades only achieve partial wake cancellation at the maximum tested rate of 2.6% for these measurements.
The results of the baseline study of Geiger (2005) are used for comparison with the mid-span velocity profiles made at four downstream locations. The velocity profiles clearly confirm the results of the normal-to-span and full cross-sections, while also revealing a decrease from the baseline of at least 25% in most of the maximum Reynolds normal stresses and turbulent kinetic energies at all rates between 1.4% and 2.7% for both sets of blowing blades. Spectral measurements of the simple blowing blades show clear reductions of the energy in the wake for all blowing rates over the majority of the range of normalized frequencies, while the Kuethe vane blades show reductions at all rates and all frequencies.
By performing Fourier decompositions, the tone noise benefits over the non-blowing baseline blades are directly comparable in decibels. The optimum blowing rate for the simple blowing blades is clearly 2.5%, since this rate shows the most potential tone noise reduction. The Kuethe vane blades suggest decreases in tone noise over all of the tested blowing rates. / Master of Science
|
3 |
A Computer-Based Cascaded Modeling and Experimental Approach to the Physical Characterization of a Clinical Full-Field Mammography SystemVed, Hetal R 20 September 2002 (has links)
"This study characterizes the image quality parameters of a clinical full-field digital mammography system at various x-ray spectral conditions. The energy of the incident x-ray beam, the spectral characteristics, and breast thickness impact the physical performance such as the detective quantum efficiency of the system, thereby affecting the overall performance. The modulation transfer function, noise power spectrum were measured without the anti-scatter grid, and the detective quantum efficiency was calculated for different incident x-ray conditions. Detective quantum efficiency was also calculated with the anti-scatter grid placed above the detector to study its impact. Results indicate a substantial drop in the detective quantum efficiency with the anti-scatter grid under certain conditions. It was also determined that detective quantum efficiency decreases as x-ray beam hardening is increased. A spatial frequency-dependent cascaded liner systems model was developed to predict the detective quantum efficiency of the system for different target-filter combinations. This theoretical model is based upon a serial cascade approach in which the system is conceptually divided into a number of discrete stages. Each stage represents a physical process having intrinsic signal and noise transfer properties. A match between the predicted data and the experimental detective quantum efficiency data confirmed the validity of the model. Contrast-detail performance, a widely used quality control tool to assess clinical imaging systems, for the clinical full-field digital mammography was studied using a commercially available CDMAM phantom to learn the effects of Joint Photographic Experts Group 2000 (JPEG2000) compression technique on detectability. A 4-alternative forced choice experiment was conducted. The images were compressed at three different compression ratios (10:1, 20:1 and 30:1). From the contrast-detail curves generated from the observer data at 50% and 75% threshold levels, it was concluded that uncompressed images exhibit lower (better) contrast-detail characteristics than compressed images but a certain limit to compression, without substantial loss of visual quality, can be used."
|
4 |
Formation and Development of the Tip Leakage Vortex in a Simulated Axial Compressor with Unsteady InflowIntaratep, Nanyaporn 28 April 2006 (has links)
The interaction between rotor blade tip leakage vortex and inflow disturbances, such as encountered in shrouded marine propulsors, was simulated in the Virginia Tech Linear Cascade Wind Tunnel equipped with a moving endwall system. Upstream of the blade row, idealized periodic inflow unsteadiness was generated using vortex generator pairs attached to the endwall at the same spacing as the blade spacing. At three tip gap settings, 1.7%c, 3.3%c and 5.7%c, the flow near the lower endwall of the center blade passage was investigated through three-component mean velocity and turbulence distributions measured by four-sensor hotwires. Besides time-averaged data, the measurements were processed for phase-locked analysis, with respect to pitchwise locations of the vortex generators relative to the blade passage. Moreover, surface pressure distributions at the blade tip were acquired at eight tip gaps from 0.87%c to 12.9%c. Measurements of pressure-velocity correlation were also performed with wall motion but without inflow disturbances.
Achieved in this study is an understanding of the characteristics and structures of the tip leakage vortex at its initial formation. The mechanism of the tip leakage vortex formation seems to be independent of the tip gap setting. The tip leakage vortex consists of a vortical structure and a region of low streamwise-momentum fluid next to the endwall. The vortical structure is initially attached to the blade tip that creates it. This structure picks up circulation shed from that blade tip, as well as those from the endwall boundary layer, and becomes stronger with downstream distance. Partially induced by the mirror images in the endwall, the vortical structure starts to move across the passage resulting in a reduction in its rotational strength as the cross sectional area of the vortex increases but little circulation is added. The larger the tip gap, the longer the vortical structure stays attached to the blade tip, and the stronger the structure when it reaches downstream of the passage.
Phased-averaged data show that the inflow disturbances cause small-scale responses and large-scale responses upstream and downstream of the vortex shedding location, respectively. This difference in scale is possibly dictated by a variation in the shedding location since the amount of circulation in the vortex is dependent on this location. The inflow disturbances possibly cause a variation in the shedding location by manipulating the separation of the tip leakage flow from the endwall and consequently the flow's roll-up process. Even though this manipulation only perturbs the leakage flow in a small scale, the shedding mechanism of the tip leakage vortex amplifies the outcome. / Ph. D.
|
5 |
RANS & WMLES Simulations of Compressor Corner SeparationPoulain, Arthur January 2019 (has links)
In axial compressor, corner separation phenomenon can occur between the blade surface and the hub. This leads to high total pressure losses, blockage and may worsen to surge. Various studies on NACA65-009 blade were previously performed experimentally and numerically to predict the corner separation. The LMFA showed that RANS simulations tend to overestimate it while the Wall-Resolved LES (WRLES) was able to well capture it. The conclusions drawn on RANS are validated here with another solver software. An extensive parametric study is performed on RANS which highlights the good performance of two non-linear turbulence models k − ω Wilcox QCR and EARSM k − kl for for predicting the topology and the intensity of corner separation. They are however very dependent on the mesh and the numerics. A Wall-Modeled LES (WMLES) is then computed. It reproduces well the topology of the separation given by the experiments and predicts similar anisotropy to the WRLES. Nevertheless it shows high sensitivity to the level of turbulence close to the endwall and the boundary layer profile of the upstream flow. Finally, this confirms that the WMLES is a promising alternative to the WRLES in order to study the corner separation on more costly geometries (several blades for instance). / I axiell kompressor kan hörnseparationsfenomen uppstå mellan bladytan och navet. Konsekvenserna är stora totala tryckförluster och kompressor blockering. Olika studier på NACA65-009 bladet utfördes tidigare experimentellt och numeriskt för att förutsäga hörnseparationen. LMFA visade att RANS simuleringar tenderar att överskatta den hörnseparationen medan Vägg-Löst LES (WRLES på engelska) kunde fånga bra den. Slutsatserna som dras om RANS valideras här med en annan lösningsprogramvara. En omfattande parametrisk studie utförs på RANS som belyserde goda prestandan för två icke-linjära turbulensmodeller k − ω Wilcox QCRoch EARSM k − kl för att förutsäga topologin och intensiteten för hörnseparation. Dock är de mycket beroende av nät och numerik. En Vägg-Modell LES (WMLES på engelska) beräknas sedan. Det reproducerar väl topologin för separationen som ges av experimenten och förutsäger liknande anisotropi som WRLES. Dock visar det hög känslighet för turbulensnivån nära ändväggen och gränsskiktsprofilen för uppströmsflödet. Slutligen bekräftar detta att WMLES är ett lovande alternativ till WRLES för att studera hörnseparationen på dyrare geometrier (till exempelflera blad).
|
6 |
Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat TransferRubensdörffer, Frank G. January 2006 (has links)
The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before the nozzle guide vane. This means that the nozzle guide vane endwall heat load for modern gas turbines is much higher compared to previous generation gas turbines. Therefore the prediction of the nozzle guide vane flow field and endwall heat transfer is crucial for the engineering task of the design layout of the vane endwall cooling system. The present study is directed towards establishing new in-depth aerodynamic and endwall heat transfer knowledge for an advanced nozzle guide vane of a modern industrial gas turbine. To reach this objective the physical processes and effects which cause the different flow fields and the endwall heat transfer pattern in a baseline configuration, a combustion chamber variant, a heat shield variant without and with additional cooling air and a cavity variant without and with additional cooling air have been investigated. The variants, which differ from the simplified baseline configuration, apply design elements which are commonly used in real modern gas turbines. This research area is crucial for the nozzle guide vane endwall heat transfer, especially for the advanced design of the nozzle guide vane of a modern industrial gas turbine and has so far hardly been investigated in the open literature. For the experimental aerodynamic and endwall heat transfer research of the baseline configuration of the advanced nozzle guide vane geometry a new low pressure, low temperature test facility has been developed, designed and constructed, since no experimental heat transfer data exist in the open literature for this type of vane configuration. The new test rig consists of a linear cascade with the baseline configuration of the advanced nozzle guide vane geometry with four upscaled airfoils and three flow passages. For the aerodynamic tests the two middle airfoils and the hub and the tip endwall are instrumented with pressure taps to monitor the Mach number distribution. For the heat transfer tests the temperature distribution on the hub endwall is measured via thermography. The analysis of these measurements, including comparisons to research in the open literature shows that the new test rig generates accurate and reproducible results which give confidence that it is a reliable tool for the experimental aerodynamic and heat transfer research on the advanced nozzle guide vane of a modern industrial gas turbine. Previous own research work together with the numerical analysis performed in another part of the project as well as conclusions from a detailed literature study lead to the conclusion that advanced Navier-Stokes CFD tools with the v2-f turbulence model are most suitable for the calculation of the flow field and the endwall heat transfer of turbine vanes and blades. Therefore this numerical tool, validated against different vane and blade geometries and for different flow conditions, has been chosen for the numerical aerodynamic and endwall heat transfer research of the advanced nozzle guide vane of a modern industrial gas turbine. The evaluation of the numerical and experimental investigations of the baseline configuration of the advanced design of a nozzle guide vane shows the flow field of an advanced mid-loaded airfoil design with the features to reduce total airfoil losses. For the hub endwall of the baseline configuration of the advanced design of a nozzle guide vane the flow characteristics and heat transfer features of the classical vane endwall secondary flow model can be detected with a very weak intensity and geometric extension compared to the studies of less advanced vane geometries in the open literature. A detailed analysis of the numerical simulations and the experimental data showed very good qualitative and quantitative agreement for the three-dimensional flow field and the endwall heat transfer. These findings, together with the evaluations obtained from the open literature, lead to the conclusions that selected CFD software Fluent together with the applied v2-f turbulence model exhibits a high level of general applicability and is not tuned to a special vane or blade geometry. Therefore the CFD code Fluent with the v2-f turbulence model has been selected for the research of the influence of the several geometric variants of the baseline configuration on the flow field and the hub endwall heat transfer of the advanced nozzle guide vane of a modern industrial gas turbine. Most of the vane endwall heat transfer research in the open literature has been carried out only for baseline configurations of the flow path between combustion chamber and nozzle guide vane. Such a simplified geometry consists of a long, planar undisturbed approach length upstream of the nozzle guide vane. The design of real modern industrial gas turbines however requires often significant variations from this baseline configuration consisting of air-cooled heat shields and purged cavities between the combustion chamber and the nozzle guide vane. A detailed evaluation of the flow field and the endwall heat transfer shows major differences between the baseline and the heat shield configuration. The heat shield in front of the airfoil of the nozzle guide vane influences the secondary flow field and the endwall heat transfer pattern strongly. Additional cooling air, released under the heat shield has a distinctive influence as well. Also the cavity between the combustion chamber and the nozzle guide vane affects the secondary flow field and the endwall heat transfer pattern. Here the influence of additional cavity cooling air is more decisive. The results of the detailed studies of the geometric variants are applied to formulate guidelines for an optimized design of the flow path between the combustion chamber and the nozzle guide vane and the nozzle guide vane endwall cooling configuration of next-generation industrial gas turbines. / QC 20100917
|
7 |
Etude expérimentale du bruit de bord de fuite à large bande d'une grille d'aubes linéaire et de sa réduction par dispositifs passifsFinez, Arthur 10 May 2012 (has links)
Le bruit de bord de fuite à large bande est l’un des contributeurs principaux du bruit des soufflantes de turboréacteurs modernes. La double nécessité de mieux comprendre sa génération et de le réduire a suscité le présent travail, essentiellement expérimental. L’étude se focalise sur l’effet de grille provoqué par la diffraction des ondes acoustiques sur les aubes adjacentes. Une grille d’aubes linéaire de solidité 1,43 est instrumentée et adaptée à la mesure acoustique dans le secteur aval pour plusieurs vitesses d’écoulement et plusieurs angles d’attaque. Le bruit de bord de fuite de la grille d’aubes prédomine ainsi sur une large gamme de fréquence. L’effet de grille se manifeste à travers des résonnances dans la grille, des interférences dans le champ lointain et à travers la dépendance en vitesse des spectres acoustiques. Les données d’entrée de modèles analytiques décrivant statistiquement la turbulence des couches limites sont directement mesurées sur les aubages. Le modèle de bruit de profil isolé d’Amiet fournit une estimation convenable des niveaux de bruit suggérant que la déformation des spectres par l’effet de grille est de faible amplitude. Nous avons ensuite adapté à la configuration expérimentale le modèle de Glegg qui tient compte des interactions entre pales. Il fournit des estimations de spectres acoustiques s’écartant de 3 dB de la prédiction de profil isolé, confirmant la conclusion précédente. Cependant ce dernier modèle décrit mieux les interférences observées en champ lointain. La réduction du bruit de bord de fuite est ensuite abordée, dans un premier temps sur profil isolé au moyen de brosses insérées au bord de fuite. Une réduction de 4,5 dB est ainsi obtenue sur une large gamme de fréquences. Une étude de corrélation aérodynamique aux fils chauds dans le sillage des brosses montre qu’elles décorrèlent les structures turbulentes dans la direction de l’envergure ce qui peut expliquer partiellement la réduction du bruit observée. Dans un deuxième temps, des chevrons dessinant des dents de scie dans la direction de l’envergure sont appliqués aux bords de fuite de la grille d’aubes. Nous retrouvons alors les observations faites avec ces dispositifs sur les profils isolés. Aucun effet de couplage entre la réduction du bruit et l’effet de grille n’est observé. Des mesures de vélocimétrie par images de particules dans le sillage des chevrons montrent que la couche limite de l’extrados est éloignée de la surface du profil fournissant un mécanisme admissible de réduction du bruit. Un deuxième mécanisme crédible est la décorrélation dans la direction de l’envergure de la nappe de vorticité lâchée dans le sillage suite à la condition de Kutta. Enfin, nous étudions l’effet de l’inclinaison du bord de fuite par rapport à l’écoulement et montrons par une prise en compte de cette géométrie dans le modèle d’Amiet qu’il peut également aboutir à une réduction acoustique. / Broadband trailing edge noise is one of the main contributors to modern turbofan noise. The current need for both understanding and reducing those sources motivated the present work.This study focuses on the cascade effect which is produced by the scattering of acoustic waves on neighbouring blades. A seven blade linear cascade is set up for acoustic measurements in the downstream sector with varying speed and angle of attack. Broadband trailing edge noise is thus the main noise source in the facility on a wide frequency range. Acoustic resonances in the cascade and far field interferences as well as specific velocity dependence are proofs of the sought blade interactions. To give a more quantitative insight in the cascade effect, Amiet isolated airfoil trailing edge noise model is first used. Its input data which are a statistical description of the turbulent boundary layer are directly measured on the suction surface of the center blade. The noise levels are fairly well predicted suggesting that the cascade effect only moderately affects the far-field acoustic spectra. Glegg’s cascade model is then modified to fit the experimental set-up and used with the same input data. The estimates differ from the isolated airfoil predictions from ±3dB confirming the preceding conclusions. However far field interferences are well recovered by Glegg’s model. Noise reduction is then assessed in this study. First, brushes are inserted in an isolated airfoil trailing edge and a broadband noise reduction of 4,5 dB is obtained. A hot wire coherence study is carried out in the near wake of the brush showing that spanwise decorrelation could be partly responsible for the observed noise reduction. Trailing edge serrations are finally applied on the cascade trailing edges and the same reduction potential than on isolated airfoil with the same device is recovered. This shows that the cascade effet has little influence on the noise reduction process. This mechanism is more likely to be threefold. Particle image velocimetry measurements show that the suction side boundary layer is thrown out from the airfoil surface which could result in smaller induced surface pressure. Secondly, the vorticity sheet shed in the wake because of the Kutta condition is necessarily less coherent in the spanwise direction with the serrations than with the straightedge. Last, the reduced relative angle between the flow and the local trailing edge could also theorically reduce the far-field noise. This has been investigated analytically by means of a modification of Amiet’s model to account for the sweep angle of the blade.
|
8 |
Design and Implementation of Periodic Unsteadiness Generator for Turbine Secondary Flow StudiesFletcher, Nathan James 18 June 2019 (has links)
No description available.
|
9 |
Aero-thermal performance of transonic high-pressure turbine blade tipsO'Dowd, Devin Owen January 2010 (has links)
No description available.
|
Page generated in 0.0697 seconds