Spelling suggestions: "subject:"unsteadystate"" "subject:"steadystate""
1 |
Analysis and Prediction of Rainfall and Storm Surge Interactions in the Clear Creek Watershed using Unsteady-State HEC-RAS Hydraulic ModelingWinter, Heather 06 September 2012 (has links)
This study presents an unsteady-state hydraulic model analysis of hurricane storm surge and rainfall-runoff interactions in the Clear Creek Watershed, a basin draining into Galveston Bay and vulnerable to flooding from both intense local rainfalls and storm surge. Storm surge and rainfall-runoff have historically been modeled separately, and thus the linkage and interactions between the two during a hurricane are not completely understood. This study simulates the two processes simultaneously by using storm surge stage hydrographs as boundary conditions in the Hydrologic Engineering Center’s – River Analysis System (HEC-RAS) hydraulic model. Storm surge hydrographs for a severe hurricane were generated in the Advanced Circulation Model for Oceanic, Coastal, and Estuarine Waters (ADCIRC) model to predict the flooding that could be caused by a worst-case scenario. Using this scenario, zones have been identified to represent areas in the Clear Creek Watershed vulnerable to flooding from storm surge, rainfall, or both.
|
2 |
Optimization of hybrid dynamic/steady-state processes using process integrationGrooms, Daniel Douglas 02 June 2009 (has links)
Much research in the area of process integration has focused on steady-state
processes. However, there are many process units that are inherently unsteady-state or
perform best when operated in an unsteady-state manner. Unsteady-state units are vital
to chemical processes but are unable to be included in current process optimization
methods. Previous methods to optimize processes containing unsteady-state units place
restrictions or constraints on their use. This optimization still does not give the best
system design because the solution found will only be the best out of the available
options which likely excludes the true optimal design. To remedy this, a methodology
was created to incorporate unsteady-state process units into process optimization
analysis. This methodology is as general as possible. Unlike many existing unsteadystate
optimization methods, it determines all three main components of process design:
the network configuration, sizes of units, and operation schedule. This generality ensures
that the truly optimal process design will be found.
Three problems were solved to illustrate the solution methodology. First, a
general mass exchange network was optimized. The optimization formulation resulted in
a mixed-integer nonlinear program, and linearization techniques were used to find the
global solution. A property interception network was also optimized, the first work done
using property integration for systems with unsteady-state behavior. Finally, an
industrial semi-batch water purification system was optimized. This problem showed
how process integration could be used to optimize a hybrid system and gain insights into
the process under many different operating conditions.
|
3 |
Impact of chemical shock loads on a membrane bioreactor for urban wastewater reuseKnops, Geraldine Jane Augustine January 2010 (has links)
The performance of an MBR under chemical shock loading conditions was investigated, to ascertain the robustness of the treatment system for urban water reuse. 32 household products and industrial substances, likely to be found in urban wastewater were assessed for toxicity, using Microtox and respirometry to obtain EC50 values. Six of these toxins were dosed into bench scale porous pots to observe any detrimental effects on the treatment system, in terms of effluent quality and potential foulant release. Four toxins were dosed into a pilot scale MBR to observe the effects of scale and enhanced biomass retention on the perturbations seen at bench scale. Mitigation of the foulants observed was investigated by the addition of ancillary chemicals. 10 household products and 6 industrial products were identified as being of risk to a biological treatment system with EC50 concentrations of the order that could be present in urban wastewater. 2 of the 6 toxins dosed into the porous pots caused a serious impact on the system reducing COD removal rates to 45%, compared with 92% average for the control pots, and increasing SMP turbidity to 11 NTU. 1 of the 4 toxins dosed into the MBR caused an impact, although less than observed in the porous pots, with the COD removal rate reducing to 77% and SMP turbidity increasing to a maximum of 9 NTU. Jar tests carried out to investigate mitigation potential of SMP turbidity found the cationic polymers MPE50 and high molecular weight polyDADMAC most efficient with reductions of SMP turbidity to <1 NTU possible although the toxins increased the dose necessary to achieve this.
|
4 |
Development and application of the method of distributed volumetric sources to the problem of unsteady-stateAmini, Shahram 15 May 2009 (has links)
This work introduces the method of Distributed Volumetric Sources (DVS) to solve the transient and
pseudosteady-state flow of fluids in a rectilinear reservoir with closed boundaries. The development and
validation of the DVS solution for simple well/fracture configurations and its extension to predict the
pressure and productivity behavior of complex well/fracture systems are the primary objectives of this
research.
In its simplest form, the DVS method is based on the calculation of the response for a closed rectilinear
system to an instantaneous change in a rectilinear, uniform volumetric source inside the reservoir.
Integration of this response over the time provides us with the solution to a continuous change (constantrate
pressure response). Using the traditional material balance equations and the DVS pressure response
of the system, we can calculate the productivity index of the system in both transient and pseudosteadystate
flow periods, which enables us to predict the production behavior over the life of the well/reservoir.
Solutions for more complex situations, such as sources with infinite or finite-conductivity (i.e., a fracture),
are provided using discretization of the source. This work considers the case of a complex system with a
horizontal well intersecting multiple transverse fractures as an example to show the ability (and flexibility)
of the new method. The DVS solution method provides accurate solutions for complex well/fracture
configurations — which will help engineers to design and implement optimum well completions.
The DVS solutions has been validated by comparing to existing analytical solutions (where applicable), as
well as to numerical (simulation) solutions. In all cases the DVS solution was successfully validated — at
least in a practical sense — specifically in terms of the accuracy and precision of the DVS solution. As the
DVS method is approximate (at early times), there are small discrepancies which are of little or no
practical consequence. In terms of computation times, because of its analytic nature, the DVS method is
not always optimal in terms of speed for certain problems, but the DVS approach is similar in computation
speed with commercial reservoir simulation programs.
|
5 |
Optimal Design and Scheduling of Unsteady State Material Recovery NetworksRabie, Arwa H. 14 January 2010 (has links)
This research developed novel methodologies to achieve cost effective solutions to
overcome many of the difficulties associated with unsteady state material recovery
network synthesis. The work focuses on the development of three different
methodologies: the first is a hierarchical multi-step methodology developed for the
design and scheduling of batch water (material of interest) recycle networks. A new
source- double tank-sink arrangement is introduced to overcome the limitation of samecycle
assignment by permitting sources to be optimally recycled within the same batch
cycle and/or storing and recycling sources to sinks in the following batch cycle. The
problem is solved in interconnected stages. First, network targets such as minimum fresh
water consumption and minimum waste water discharge are identified ahead of network
design. Once design targets have been identified, an iterative procedure is followed to
tradeoff fixed and operating cost to achieve a network design which has the minimum
total annualized cost (TAC). The second developed methodology is a one-step simultaneous approach to design and
schedule cost-effective batch water recycle networks. A new source-tank-sink
representation is developed to embed potential configurations of interest for design and
scheduling. As a result, water may be assigned from sources to sinks within the same
cycle (with or without a storage tank) and in two subsequent cycles using a double tank
arrangement. A mathematical formulation is developed to determine the network design
and sufficient information on the scheduling of the network with the minimum TAC in
one step.
The third methodolgy this research developed is a systematic procedure to schedule the
operation of an unsteady state material recovery network. The network has a set design
and receives a number of feedstocks (sources) that are to be processed into higher
value/quality products. The sources may be stored in tanks, mixed, and/or intercepted in
separation devices to produce the desired products while maximizing profits and meeting
all process constraints. The developed systematic procedure includes mathematical
formulations that allow available sources to be stored, mixed, intercepted and determine
the optimal scheduling scheme over time period ??with the objective of maximizing total
annualized profit of the network.
|
6 |
A Numerical and Experimental Investigation of Flow Induced Noise In Hydraulic Counterbalance ValvesElsheikh, Mutasim Mohamed 01 January 2015 (has links)
The main objective of this study is to explore the complex fluid flow phenomena that result in the generation of a high frequency noise in counterbalance valves through an experimental and numerical investigation of the flow. Once the influence of the different components involved in noise generation is established, a secondary objective is the introduction of design modifications that eliminate the undesired effect without altering the operation envelope or the performance of the valve.
A hydraulic test bench was used to carry out an experimental investigation of the noise generation process. A computer based data acquisition system was used to record pressure fluctuations, flowrates and hydraulic oil temperatures in a production valve under a variety of operational conditions. Extensive experimental measurements and numerical modeling lead to the hypothesis that noise generation is the result of an acoustic resonance triggered by shear layer instability at the valve inlet. The pressure gradients developed when the shear layer entrains the stagnant fluid in the valve main cavity cause the layer to become unstable and oscillate. The oscillation frequency will depend on a great number of factors such as valve geometry, pressure and velocity gradients and the density and viscosity of the fluid. It is postulated that the observed noise is generated when this frequency matches one of the resonant frequencies of the valve cavity.
The proposed mechanism is theoretically poorly understood and well beyond simplified analysis, its accurate numerical simulation is computational very intensive requiring sophisticated CFD codes. The numerical investigation was carried out using STAR–CCM+, a commercially available CFD code featuring 3-D capabilities and sophisticated turbulence modeling. Streamline, pressure, velocity-vector and velocity-scalar plots were obtained for several valve configurations using steady and unsteady state flow simulations.
An experimental and numerical analysis of an alternative valve geometry was carried out. Experimental results demonstrated a greatly reduced instability range. The numerical analysis of the unsteady behavior of the shear-layer streamlines for both valves yielded results that were compatible with the experimental work.
The results of this investigation promise a great positive impact on the design of this type of hydraulic valves.
|
7 |
APPLICATION OF PROCESS SYSTEMS ENGINEERING TOOLS AND METHODS TO FERMENTATION-BASED BIOREFINERIESDarkwah, Kwabena 01 January 2018 (has links)
Biofuels produced from lignocellulosic biomass via the fermentation platform are sustainable energy alternatives to fossil fuels. Process Systems Engineering (PSE) uses computer-based tools and methods to design, simulate and optimize processes. Application of PSE tools to the design of economic biorefinery processes requires the development of simulation approaches that can be integrated with existing, mature PSE tools used to optimize traditional refineries, such as Aspen Plus. Current unit operation models lack the ability to describe unsteady state fermentation processes, link unsteady state fermentation with in situ separations, and optimize these processes for competing factors (e.g., yield and productivity). This work applies a novel architecture of commercial PSE tools, Aspen Plus and MATLAB, to develop techniques to simulate time-dependent fermentation without and with in situ separations for process design, analyses and optimization of the operating conditions.
Traditional batch fermentation simulations with in situ separations decouple these interdependent steps in a separate “steady state” reactor followed by an equilibrium separation of the final fermentation broth. A typical mechanistic system of ordinary differential equations (ODEs) describing a batch fermentation does not fit the standard built-in power law reaction kinetics model in Aspen Plus. To circumvent this challenge, a novel platform that links the batch reactor to a FORTRAN user kinetics subroutine (incorporates the ODEs) combined with component substitution (to simulate non-databank components) is utilized to simulate an unsteady state batch and in situ gas stripping process. The resulting model system predicts the product profile to be sensitive to the gas flow rate unlike previous “steady state” simulations. This demonstrates the importance of linking a time-dependent fermentation model to the fermentation environment for the design and analyses of fermentation processes.
A novel platform linking the genetic algorithm multi-objective and single-objective optimizations in MATLAB to the unsteady state batch fermentation simulation in Aspen Plus through a component object module communication platform is utilized to optimize the operating conditions of a typical batch fermentation process. Two major contributions are: prior concentration of sugars from a typical lignocellulosic hydrolysate may be needed and with a higher initial sugar concentration, the fermentation process must be integrated with an in situ separation process to optimize the performance of fermentation processes. With this framework, fermentation experimentalists can use the full suite of PSE tools and methods to integrate biorefineries and refineries and as a decision-support tool to guide the design, analyses and optimization of fermentation-based biorefineries.
|
8 |
Solidificação transitoria de ligas hipomonotetica e monotetica do sistema A1-Bi / Transient solidification of hypomonotectic and monotectic A1-Bi alloysSilva, Maria Adrina Paixão de Souza da 12 August 2018 (has links)
Orientadores: Amauri Garcia, Jose Eduardo Spinelli / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-12T23:27:26Z (GMT). No. of bitstreams: 1
Silva_MariaAdrinaPaixaodeSouzada_M.pdf: 3527327 bytes, checksum: 88f3012a000dcdb2956852ed7fa40402 (MD5)
Previous issue date: 2008 / Resumo: Ligas de alumínio dispersas com bismuto apresentam aplicações promissoras em componentes automotivos resistentes ao desgaste. Essas dispersões de elementos de baixa temperatura de fusão diminuem a dureza e escoam facilmente em condições de deslizamento, resultando em um comportamento tribológico favorável. Muitos estudos têm sido realizados a fim de melhor compreender as distintas morfologias obtidas pela reação monotética. Algumas pesquisas assumem que a evolução do espaçamento interfásico na liga monotética Al-Bi obedece à clássica relação utilizada para eutéticos: ?2v = C, onde v é a velocidade de solidificação e C é uma constante. Não há nenhum consenso a respeito dos valores de C encontrados. Além disso, tais estudos utilizaram fornos de aquecimento à resistência do tipo Bridgman para produzir a solidificação direcional de ligas monotéticas. Existe uma falta de estudos consistentes no desenvolvimento microestrutural de ligas monotéticas durante condições de fluxo de calor transitório, que são de importância primordial, uma vez que esse tipo de fluxo de calor engloba a maioria dos processos industriais de solidificação. No presente estudo, foram feitos experimentos de solidificação unidirecional em regime não-estacionário com as ligas hipomonotética Al-2,0%Bi e monotética Al-3,2%Bi. Os parâmetros térmicos como velocidades de crescimento, taxas de resfriamento e gradientes térmicos foram determinados experimentalmente por curvas de resfriamento adquiridas ao longo do comprimento do lingote. Os crescimentos celular e monotético foram caracterizados por técnicas metalográficas, e os espaçamentos celulares e
interfásicos correlacionados com os parâmetros térmicos de solidificação. Verificou-se que a lei de crescimento ?2v = C pode ser expressa por um valor de C de 1,70 x10-12, que é em torno de duas ordens de magnitude maior do que aqueles reportados para o regime estacionário. Embora o fluxo convectivo induzido não tenha sido suficiente para mudanças consideráveis na magnitude dos espaçamentos interfásicos, as partículas ricas em bismuto foram afetadas pela direção do crescimento, diminuindo o diâmetro em condições de solidificação vertical descendente, quando comparadas com aquelas obtidas no modo vertical ascendente / Abstract: Aluminium alloys dispersed with bismuth show promising applications in wear-resistant automotive components. Such dispersions of low melting temperature elements decrease hardness and flow easily under sliding conditions, resulting in favorable tribological behavior. Much research has been devoted in order to better comprehend the distinct morphologies obtained by monotectic reaction. Some researches assume that the phase spacing evolution in the monotectic Al-Bi alloy follows the classical relationship used for eutectics: ?2v = C, where v is the solidification velocity and C a constant value. There is no consensus concerning the found C values. Other than, such studies have used Bridgman-type resistance heated furnaces to produce the directionally solidified monotectic samples. There is a lack of consistent studies on the microstructural development of monotectic Al-Bi alloy during transient heat flow conditions, which are of prime importance since this class of heat flow encompasses the majority of solidification industrial processes. In the present study, directional unsteady-state solidification experiments were carried out with hypomonotectic Al-2.0wt%Bi and monotectic Al-3.2wt%Bi alloys. The thermal parameters such as growth rates, cooling rates and thermal gradients were experimentally determined by cooling curves recorded along the casting length. The cellular and monotectic growths were characterized by metallography, being both the cell and the interphase spacing correlated with the thermal parameters. It is shown that the ?2v = C growth law can be expressed by a C value of 1,7x10-12, which is about two orders of magnitude higher than those reported for the steady-state regime. Although the induced convective flow was not enough to considerably change the interphase spacing's magnitude, the Bi-rich particle diameters have been affected by the direction of growth, decreasing in conditions of downward vertical solidification when compared with those grown vertically upwards / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
|
9 |
Tratabilidade de águas residuárias de indústrias petroquímicas - estudo de caso. / Treatability of petrochemical industries wastewaters - case study.Hilsdorf, Antonio Sérgio de Carvalho 02 September 2008 (has links)
O tratamento de águas residuárias industriais, submetido constantemente a cargas de choque, é pouco estudado no Brasil, sendo limitado o grau de conhecimento que se tem no mundo sobre os mecanismos de remoção de disruptores endócrinos nos sistemas de tratamento físico-químicos e biológicos. O presente trabalho traz um estudo de caso, envolvendo uma indústria com uma composição de produtos muito diversificada, com despejos líquidos de unidades isoladas de qualidades diversas e que tem como uma das principais matérias-primas, nonil fenóis, conhecidos disruptores endócrinos. Os mecanismos de remoção de carga orgânica e a avaliação da toxicidade da água residuária ao processo biológico de tratamento foram estudados em escala de laboratório, enquanto que a sua tratabilidade por coagulação, floculação, flotação com ar dissolvido seguido de sistema de lodos ativados, em escala piloto. Avaliou-se, também, a aplicabilidade do tratamento biológico com carvão ativado em pó. A grande variação qualitativa e quantitativa da água residuária bruta requer uma unidade de equalização com tempo de detenção de pelo menos 30 horas. O maior responsável por esta variação de qualidade é o processo da unidade química, cujo efluente é proveniente de lavagens de tanques e reatores. Apesar da reduzida eficiência de remoção de DQO obtida com a coagulação, floculação e flotação com ar dissolvido (20 a 30%), constatou-se que este tratamento é essencial para a redução da toxicidade ao processo biológico. A dosagem de coagulante e o pH ótimos variam conforme a característica do despejo e devem ser determinadas diariamente. No sistema biológico, observou-se uma remoção significativa da DQO do efluente bruto gerado na indústria, não apenas por biodegradação, mas também por volatilização e adsorção. Os testes de bancada evidenciaram remoções de DQO por arraste com ar de 47 a 77 % e por adsorção no lodo biológico, de 42%. Apesar dos constantes choques de carga orgânica e de poluentes tóxicos, conseguiu-se atingir o estado estacionário com variações máximas da concentração de sólidos em suspensão voláteis no tanque de aeração entre 20 e 30%. Neste período, a idade do lodo situou-se em torno de 25 a 30 dias e o tempo de detenção hidráulico foi de 3,8 dias. A eficiência média de remoção de DQO neste período foi de 86%. Os testes com a unidade piloto demonstraram que a utilização de carvão ativado em pó (CAP) produz resultados satisfatórios, comprovando a redução de poluentes tóxicos da água residuária e refletindo em uma significativa melhora na biodegradabilidade do efluente, com aumento da concentração de sólidos em suspensão voláteis no tanque de aeração (de 1380 mg/L para 3820 mg/L) e redução da amplitude de variação da DQO do efluente tratado que passou de 600 a 3200 mgO2/L para o sistema sem CAP para 300 a 600 mgO2/L para o sistema com CAP. Notou-se, também, com a adição de CAP, melhoria na sedimentação do lodo. Pode-se concluir também que o sistema de tratamento atendeu a legislação atual do Estado de São Paulo, com uma remoção média de 80% da DBO5. / Wastewater treatment systems continuously receiving shock loads and the behavior of contaminants under unsteady state conditions are not very well documented in our country, with limited degree of knowledge in the world on the removal of specific pollutants like endocrine disrupting chemicals (EDC) in physical chemical and biological wastewater treatment systems. The present work brings a case study regarding an industry which wastewaters were generated from plants with multiproducts and campaign production with variable composition, and with nonylphenols as one of their raw materials which is known as an endocrine disrupting chemical. The organic load and toxicity removal mechanisms of the wastewater to the biological treatment were studied in bench scale whilst their treatability was evaluated through coagulation, flocculation, dissolved air flotation followed by activated sludge, in pilot scale. The feasibility of the addition of powdered activated carbon to the biological system was also studied. The large qualitative and quantitative variability of the wastewater requires an equalization time of at least 30 hours. The main responsible for this variability in quality is the chemical unit process which wastewaters are originated from reactors and tanks cleanings. Although the low efficiency in COD removal obtained with coagulation, flocculation and dissolved air flotation (20 to 30%), it was found that this process is essential to the toxicity reduction for the biological process. Optimum pH and coagulant dose vary with the wastewater characteristics, and must be determined on a daily basis. On the biological system, it was observed important raw wastewater COD elimination not only through biodegradation, but also through volatilization and adsorption. Bench tests revealed COD elimination of 47 to 77% by air stripping and 42% by adsorption onto the biological sludge. Despite of constant organic and toxic shock loads, it had been possible to reach the steady state during which the maximum variation on the volatile suspended solids concentration was 20 to 30%. During this period, sludge age was around 25 to 30 days, and the hydraulic detention time was 3,8 days. Average efficiency on COD removal in this period was 86%. Tests results with PAC dosage on the pilot plant showed satisfactory, proving the reduction of toxic compounds from the wastewater and resulting in biodegradability improvement. The increase of volatile suspended solids in the aeration tank was from 1380 mg/L to 3820 mg/L, and reduction in the range of variation of remaining treated water COD from 600 to 3200 mgO2/L (system without CAP) down to 300 to 600 mgO2/L (system with CAP). The improvement on the sludge sedimentation with PAC addition was also remarkable. One can also conclude the treatment system attained the current legislation of the State of São Paulo, with 80% BOD5 removal.
|
10 |
Étude d’une méthode d’éléments finis d’ordre élevé et de son hybridation avec d’autres méthodes numériques pour la simulation électromagnétique instationnaire dans un contexte industriel / Study of a high-order finite element method and its hybridization with order numerical methods for unsteady electromagnetic simulation in an industrial contextDeymier, Nicolas 08 December 2016 (has links)
Dans cette thèse, nous nous intéressons à l’amélioration du schéma de Yee pour traiter demanière plus efficace et pertinente les problèmes industriels auxquels nous sommes confrontés à l’heureactuelle. Pour cela, nous cherchons avant tout à diminuer les erreurs numériques de dispersion et àaméliorer les modélisations des géométries courbes ainsi que des réseaux de câbles. Pour répondre àces besoins, une solution basée sur un schéma Galerkin discontinu pourrait être envisagée. Toutefois,l’utilisation d’une telle technique sur la totalité du volume de calcul est relativement coûteuse. De plus,la prise en compte de structures filaires sur un tel schéma n’est pas encore opérationnelle. C’est pourquoi,dans l’optique d’avoir un outil industriel, et après une étude bibliographique, nous nous sommes plutôtorientés sur l’étude d’un schéma éléments finis (FEM) sur maillage cartésien qui possède toutes lesbonnes propriétés du schéma de Yee. Notamment, à l’ordre d’approximation spatiale égal à 0 ce schémaFEM est exactement le schéma de Yee, et, pour des ordres supérieurs, il permet de réduire fortementl’erreur de dispersion numérique de ce dernier. Dans le travail de cette thèse, pour ce schéma, nous avons notamment donné un critère de stabilité théorique, étudié sa convergence théorique et fait une analyse de l’erreur de dispersion. Pour tenircompte des possibilités d’ordre d’approximation spatiale variable par direction, nous avons mis en placeune stratégie d’affectation des ordres suivant le maillage donné. Ceci nous a permis d’obtenir un pas detemps optimal pour une précision souhaitée tout en réduisant les coûts de calcul. Après avoir porté ceschéma sur des machines de production, différents problèmes de CEM, antennes, IEM ou foudre ont ététraités afin de montrer les avantages et le potentiel de celui-ci. En conclusion de ces expérimentationsnumériques, il s’avère que la méthode est limitée par le manque de précision pour prendre en comptedes géométries courbes. Afin d’améliorer cela, nous avons proposé une hybridation entre ce schéma et leschéma GD que l’on peut étendre aux autres schémas comme les méthodes différences finies (FDTD) etvolumes finis (FVTD). Nous avons montré que la technique d’hybridation proposée conserve l’énergie etest stable sous une condition que nous avons évaluée de manière théorique. Des exemples de validationont ensuite été montrés. Enfin, pour tenir compte des réseaux de câbles, un modèle de fils minces d’ordred’approximation spatiale élevé a été proposé. Malheureusement, celui-ci ne peut pas couvrir l’ensembledes cas industriels et pour remédier à cela, nous avons proposé une hybridation de notre approche avecune équation de ligne de transmission. L’intérêt de cette hybridation a été montré sur un certain nombred’exemples, que nous n’aurions pas pu traiter par un modèle de structure filaire simple. / In this thesis, we study the improvement of the Yee’s scheme to treat efficiently and in arelevant way the industrial issues we are facing nowadays. For that, we first of all try to reduce thenumerical errors of dispersion and then to improve the modeling of the curved surfaces and of theharness networks. To answer these needs, a solution based on a Galerkin Discontinuous (GD) methodhas been first considered. However, the use of such method on the entire modeling volume is quite costly ;moreover the wires are not taken into account in this method. That is the reason why, with the objectiveof an industrial tool and after a large bibliographic research, we headed for the study of finite elementsscheme (FEM) on a Cartesian mesh which has all the good properties of the Yee’s scheme. Especially,this scheme is exactly the Yee’s scheme when the spatial order of approximation is set to zero. Forthe higher orders, this new scheme allows to greatly reduce the numerical error of dispersion. In theframe of this thesis and for this scheme, we give a theoretical criterion of stability, study its theoreticalconvergence and we perform an analysis of the error of dispersion. To take into account the possibilityof the variable spatial orders of approximation in each direction, we put in place a strategy of orderaffectation according to the given mesh. This strategy allows to obtain an optimal time step for a givenselected precision while reducing the cost of the calculations. Once this new scheme has been adaptedto large industrial computing means, different EMC, antennas, NEMP or lightning problems are treatedto demonstrate the advantages and the potential of this scheme. As a conclusion of these numericalsimulations we demonstrate that this method is limited by a lack of precision when taking into accountcurved geometries. To improve the treatment of the curved surfaces, we propose an hybridization between this scheme andthe GD scheme. This hybridization can also be applied to other methods such as Finite Differences(FDTD) or Finite Volumes (FVTD). We demonstrate that the technique of hybridization proposed,allows to conserve the energy and is stable under a condition that we study theoretically. Some examplesare presented for validation. Finally and to take into account the cables, a thin wire model with a highorder of spatial approximation is proposed. Unfortunately, this model does not allow to cover all theindustrial cases. To solve this issue we propose an hybridization with a transmission line method. Theadvantage of this hybridization is demonstrated thanks to different cases which would not have beenfeasible with a more simple thin wire method.
|
Page generated in 0.0675 seconds