Spelling suggestions: "subject:"unsupervised pretraining"" "subject:"unsupervised prestraining""
1 |
Recognition of Facial Expressions with Autoencoders and Convolutional-NetsAlmousli, Hani 12 1900 (has links)
Les humains communiquent via différents types de canaux: les mots, la voix, les gestes du corps, des émotions, etc. Pour cette raison, un ordinateur doit percevoir ces divers canaux de communication pour pouvoir interagir intelligemment avec les humains, par exemple en faisant usage de microphones et de webcams.
Dans cette thèse, nous nous intéressons à déterminer les émotions humaines à partir d’images ou de vidéo de visages afin d’ensuite utiliser ces informations dans différents domaines d’applications. Ce mémoire débute par une brève introduction à l'apprentissage machine en s’attardant aux modèles et algorithmes que nous avons utilisés tels que les perceptrons multicouches, réseaux de neurones à convolution et autoencodeurs. Elle présente ensuite les résultats de l'application de ces modèles sur plusieurs ensembles de données d'expressions et émotions faciales.
Nous nous concentrons sur l'étude des différents types d’autoencodeurs (autoencodeur débruitant, autoencodeur contractant, etc) afin de révéler certaines de leurs limitations, comme la possibilité d'obtenir de la coadaptation entre les filtres ou encore d’obtenir une courbe spectrale trop lisse, et étudions de nouvelles idées pour répondre à ces problèmes. Nous proposons également une nouvelle approche pour surmonter une limite des autoencodeurs traditionnellement entrainés de façon purement non-supervisée, c'est-à-dire sans utiliser aucune connaissance de la tâche que nous voulons finalement résoudre (comme la prévision des étiquettes de classe) en développant un nouveau critère d'apprentissage semi-supervisé qui exploite un faible nombre de données étiquetées en combinaison avec une grande quantité de données non-étiquetées afin d'apprendre une représentation adaptée à la tâche de classification, et d'obtenir une meilleure performance de classification. Finalement, nous décrivons le fonctionnement général de notre système de détection d'émotions et proposons de nouvelles idées pouvant mener à de futurs travaux. / Humans communicate via different types of channels: words, voice, body gesture, emotions …etc. For this reason, implementing these channels in computers is inevitable to make them interact intelligently with humans. Using a webcam and a microphone, computers should figure out what we want to tell from our voice, gesture and face emotions.
In this thesis we are interested in figuring human emotions from their images or video in order to use that later in different applications. The thesis starts by giving an introduction to machine learning and some of the models and algorithms we used like multilayer perceptron, convolutional neural networks, autoencoders and finally report the results of applying these models on several facial emotion expression datasets.
We moreover concentrate on studying different kinds of autoencoders (Denoising Autoencoder , Contractive Autoencoder, …etc.) and identify some limitations like the possibility of obtaining filters co-adaptation and undesirably smooth spectral curve and we investigate new ideas to address these problems. We also overcome the limitations of training autoencoders in a purely unsupervised manner, i.e. without using any knowledge of task we ultimately want to solve (such as predicting class labels) and develop a new semi-supervised training criterion which exploits the knowledge of the few labeled data to train the autoencoder together with a large amount of unlabeled data in order to learn a representation better suited for the classification task, and obtain better classification performance. Finally, we describe the general pipeline for our emotion detection system and suggest new ideas for future work.
|
2 |
Recognition of Facial Expressions with Autoencoders and Convolutional-NetsAlmousli, Hani 12 1900 (has links)
No description available.
|
Page generated in 0.0981 seconds