Spelling suggestions: "subject:"unterirdisches bauwerk"" "subject:"unterirdisches bauwerke""
1 |
Untertage-Aufnahme und anschließende Demokratisierung von terrestrischen LaserscandatenStudnicka, Nikolaus, Groiss, Bernhard 16 July 2019 (has links)
Bereits seit Längerem wird das terrestrische Laser Scanning zur Vermessung von über- und unterirdischen Bauwerken eingesetzt. Die Forderung nach einer detaillierten digitalen 3D-Dokumentation erfordert geeignete Methoden, die eine möglichst hohe geometrische Auflösung bei entsprechend effizienten Aufnahmeverfahren ermöglichen. Gerade die Bedingungen unter Tage stellen große Herausforderungen an die Aufnahme: Obwohl viele Scanpositionen aufgenommen werden müssen, spielt der Zeitaufwand für die Abwicklung des gesamten Scanprojekts eine große Rolle. Obwohl keine GNSS (Global Navigation Satellite System)-Messungen möglich sind, sind die Anforderungen an die Robustheit des „Workflows“ und an die Genauigkeit des Gesamtprojekts hoch. Auf der einen Seite sollen große und komplexe 3D-Daten möglichst lückenfrei und komplett aufgenommen, auf der anderen Seite sollen die Ergebnisse dann aber auch möglichst vielen Anwendern flüssig und intuitiv bedienbar zur Verfügung stehen. In vielen Details wurde gerade in den letzten Jahren der gesamte Aufnahme- und Auswerteprozess beschleunigt und verbessert: Die Laserscanner messen mit „Millimeter-Genauigkeit“, es können dutzende hochauflösende Scans pro Stunde aufgenommen werden, die Scanpositionen werden auch ohne GNSS-Information automatisch zueinander registriert und eine Ausgleichsrechnung kann abschließend einen Fehlerreport des gesamten Vermessungsprojektes liefern. Diese Arbeit soll sowohl den gesamten „Vermessungs-Workflow“ beschreiben, als auch eine neue Methode aufzeigen, ein Scanprojekt mehreren Institutionen gleichzeitig zugänglich zu machen. Alle Scans eines Projektes können speicheroptimiert im Intranet oder im Internet als ein sogenanntes „RiPANO“-Projekt gespeichert werden. Die Navigation zwischen einzelnen Scanpositionen erfolgt intuitiv, rasch und übersichtlich. Mehrere Benutzer können dann gleichzeitig darauf zugreifen und die Daten so vorbereiten, dass daraus CAD-(Bestands-)Pläne erstellt werden können. / For some time now, terrestrial laser scanning has been used for surveying above and below ground structures. The demand for detailed digital 3D documentation requires suitable methods that allow the highest possible geometric resolution with correspondingly efficient recording methods.
The underground conditions in particular pose great challenges for the recording: although many scan positions have to be recorded, the time required to complete an entire scan project plays an important role. Although no GNSS (global navigation satellite system) measurements are possible, the demands on the robustness of the registration and the accuracy of the overall project are high. On the one hand, large and complex 3D data should be recorded as gap-free and complete as possible, on the other hand, the results should be made available to as many users as possible in a fluent and easy to use way.
|
2 |
Punktwolken von Handscannern und ihr PotenzialMartienßen, Thomas 16 July 2019 (has links)
Der Beitrag beschäftigt sich mit dem Handscanner ZEB-REVO der Firma GeoSLAM. Es werden die Handhabung der Hardware im untertägigen Einsatz und die Weiterverarbeitung der Punktwolken für Anwendungen im Bergbau näher betrachtet. Die Notwendigkeit der Referenzierung der Punktwolken und eine Möglichkeit diese umzusetzen, werden dargelegt. Über den Vergleich der Daten mit Punktwolken von terrestrischen Laserscannern der Firma Riegl in der Software RiScanPro werden Genauigkeitsuntersuchungen angestellt, die dem Anwender die Grenzen des Systems aufzeigen. Schließlich führen die angestellten Untersuchungen zu einer kritischen Bewertung des Systems. / This contribution addresses practical aspects, abilities and limitations in using the ZEBREVO hand-held scanner from GeoSLAM for underground mine mapping. Besides mapping activities, also post-processing of generated point clouds and requirements for georeferencing are discussed. An accuracy assessment is presented by the means of a point cloud comparison, generated by a terrestrial laser scanner from Riegl. Results demonstrate the technical ability and also the limitations of the system ZEB-REVO. Concluding, a critical evaluation of the system is presented.
|
3 |
Sampling-Based Exploration Strategies for Mobile Robot AutonomySteinbrink, Marco 08 September 2023 (has links)
A novel, sampling-based exploration strategy is introduced for Unmanned Ground Vehicles (UGV) to efficiently map large GPS-deprived underground environments. It is compared to state-of-the-art approaches and performs on a similar level, while it is not designed for a specific robot or sensor configuration like the other approaches. The introduced exploration strategy, which is called Random-Sampling-Based Next-Best View Exploration (RNE), uses a Rapidly-exploring Random Graph (RRG) to find possible view points in an area around the robot. They are compared with a computation-efficient Sparse Ray Polling (SRP) in a voxel grid to find the next-best view for the exploration. Each node in the exploration graph built with RRG is evaluated regarding the ability of the UGV to traverse it, which is derived from an occupancy grid map. It is also used to create a topology-based graph where nodes are placed centrally to reduce the risk of collisions and increase the amount of observable space. Nodes that fall outside the local exploration area are stored in a global graph and are connected with a Traveling Salesman Problem solver to explore them later.
|
4 |
Aufbau des Schockwellenlabors im Lehr- und Forschungsbergwerk 'Reiche Zeche' der TU Bergakademie Freiberg und die Entwicklung von dynamischen HöchstdrucksynthesemethodenSchlothauer, Thomas 30 January 2024 (has links)
In dieser Arbeit werden folgende Arbeiten vorgestellt:
● Aufbau eines Schockwellenlabors für unterschiedliche Einsatzzwecke für eine Nettoexplosivmasse von bis zu 20 kg, bezogen auf NSH 711 (C4 nach MIL-Standard),
● Klärung der Ursachen des Probenverlustes bei Schockwellensyntheseexperimenten ab Überschreitung eines gewissen materialabhängigen Grenzdruckes unter Verwendung von in der Literatur vorgegebenen Standardmethoden sowie eine wissenschaftlich fundierte Prob-lembehebung auf der Basis empirischer Theorien,
● Berechnung der Zustandsgrößen Druck (p), Temperatur (T) sowie Zeit (t) unter den ge-wählten Versuchsbedingungen für unterschiedliche Problemstellungen und Materialien mit Kontrollmöglichkeiten sowie
● Gewährleistung des maximal möglichen Phasenumwandlungsgrades für die entsprechende Hochdruckphase.
Insgesamt wurden im Verlauf der Entwicklungsarbeiten im Schockwellenlabor 122 Spren-gungen durchgeführt. Die Drücke betragen dabei zwischen 15 GPa und ca. 180 GPa. Es gelangen zahlreiche erfolgreiche Synthesen der Hochdruckphasen gamma-Si3N4 sowie rs-AlN mit Probenmengen von 0,2g bis zu 7,3g Hochdruckphase pro Versuch.
Es wurden auf Basis der Rankine-Hugoniot-Zustandsgleichung drei empirische Grundprinzipien der Schockwellensynthese entwickelt, welche es nunmehr gestatten, die Schockwellenversuche reproduzierbar sowie gut kontrollierbar zu gestalten. Dies sind die „Vermeidung von Mach-Effekten“, die „Impedanzkorrektur der Probeneinheit“ sowie die „Kontrolle der adiabatischen Dekompression“.
In mehr als 100 Experimenten, welche mit der impedanzkorrigierten Probeneinheit durchgeführt wurden, trat in keinem Fall Probenverlust auf, Gasdichtheit konnte teilweise hergestellt werden. Dies war unabhängig von dem erreichten Druck oberhalb des technisch bedingten Mindestdruckes von 15 GPa innerhalb der Probeneinheit möglich.
Es wurden Versuche sowohl mit der Reflektionsmethode als auch mit der Impedanzmethode durchgeführt sowie für besondere Experimente dünne Metallplatten zwischen Flugplatte und Containeroberseite verwendet. In allen genannten Fällen sind die unterschiedlichen Druck- und Temperaturbedingungen in den Proben eindeutig verifizierbar.
Weiterhin gelang es im Rahmen dieser Arbeit erstmals, sowohl Calciumcarbonat als auch Kaolinit (sogenannte fluidreiche Phasen) bis in den Druckbereich p> 100 GPa unter unterschiedlichen Temperaturen dynamisch zu belasten, ohne dass die empfindlichen Proben Ent-gasungs- bzw. Zerfallserscheinungen (Calcit) bzw. Aufschmelzungen (Kaolinit) aufwiesen.
Besonderes Augenmerk ist dabei auf die Schocktemperatur zu richten, um den Druckaufbau nicht durch eine zu starke Aufheizung der Probe zu reduzieren (sogenanntes Knudson-Problem). Jede zukünftige Erhöhung des Druckes macht gleichzeitig eine Reduzierung der relativen Schocktemperatur erforderlich.
Diese experimentellen Erfolge sind lediglich in dem Falle möglich, wenn im Schockwellenlabor folgende Grenzbedingungen eingehalten werden:
● Die Schockgeschwindigkeit Us ist größer als die Schallgeschwindigkeit des betreffenden Stoffes.
● Die erzielten Drücke sind höher als das Hugoniot-Elastic-Limit des betreffenden Stoffes und somit im Bereich des plastischen Verhaltens.
● Die maximale Porosität k des Impedanzpulvers ist kleiner als die Mie-Grüneisen-Grenze des betreffenden Stoffes.
● Die maximalen Drücke sind geringer als der Bulk-Modulus des betreffenden Stoffes und die Schallgeschwindigkeit im dichten Medium ist größer als die Schockgeschwindigkeit (Bereich der so genannten „schwachen Schockwellen“).
● Es wird ein Impedanzpulver-Probe-Verhältnis von >9:1 verwendet.
● Weiterhin stellt für die Schockwellensyntheseexperimente unter Vermeidung der freien adiabatischen Dekompression die Schocktemperatur (die Temperatur im Bereich des konstanten Druckes) die ausschlaggebende Größe dar.
Für die Berechnung wurde entschieden, die Software MatLab zu verwenden. Die Berechnungen folgen den Grundlagen der linearen Algebra. Für die Berechnung der Zustandsgleichung wurden im Rahmen dieser Arbeit folgende vereinfachende Annahmen verifiziert:
● Unter den genannten Bedingungen gilt der lineare Zusammenhang zwischen Partikelge-schwindigkeit Up und Schockgeschwindigkeit Us.
● Unter den Bedingungen des Freiberger Schockwellenlabors sind die Unterschiede zwischen der gespiegelten Hugoniot und der release-adiabat-Kurve sehr gering, es kann an deren Stelle die gespiegelte Hugoniot verwendet werden.
● Die maximalen Drücke sind niedriger als der Schmelzpunkt auf der Hugoniot, sämtliche in dieser Arbeit dargestellten Berechnungen betreffen die beteiligten Stoffe im festen Zustand.
Die impedanzkorrigierte Probeneinheit ist nicht zum Messen von Zustandsgleichungen geeignet, die Methoden „vollständige Probenrückgewinnung“ sowie „Messung der Zustands-gleichung“ schließen sich gegenseitig aus.:Motivation 1
1 Einführung 5
1.1 Das Hochdruckforschungszentrum (FHP) der
Dr. Erich-Krüger-Stiftung 5
1.2 Möglichkeiten zur Erzeugung hoher dynamischer Drücke sowie zur Schockwel-lensynthese 24
1.3 Aufgaben des neuen Schockwellenlabors in Freiberg 31
2 Aufbau und Betrieb des neuen untertägigen Schockwellen-
labors der TU Bergakademie Freiberg 35
2.1 Sprengarbeiten unter Bergrecht an einer Hochschule 35
2.2 Rechtliche Situation des Schockwellenlabors an der
TU Bergakademie Freiberg 39
2.3 Lage und Dimensionierung des Schockwellenlabors 47
2.4 Ausrüstung des Labors 51
3. Physikalische Grundlagen 58
3.1 Verwendete Sprengstoffe 58
3.2 Detonation des Sprengstoffes und die Rankine-Hugoniot-
Zustandsgleichung 60
3.2.1 Die Druck-Partikelgeschwindigkeits-Beziehung 64
3.2.2. Die Beziehung zwischen Druck und Differenz der
spezifischen Volumina 66
3.2.3. Die Beziehung zwischen Druck und Differenz der
spezifischen Inneren Energien 67
3.3 Plane-Wave-Generator (PWG) mit Flyer-Plate 69
3.3.1. Aktiver PWG 73 3.3.2. Passiver PWG 73
3.4 Beschleunigung der Flugplatte 74
3.5 Kollision der Flugplatte mit dem Probencontainer 77
3.6 Mie-Grüneisen-EoS und die Berechnung der Schocktemperatur 82
3.7 Verdichtung poröser Materialien 89
3.8 Schockwellenreflektionen 94
3.8.1 Reguläre Reflektionen 95
3.8.1.1 Reflektion an einer freien Oberfläche
sowie adiabatische Dekompression 95
3.8.1.2 Reflektion an einer Materialgrenze 99
3.8.2 Irreguläre Reflektionen (Mach-Effekte) 102
3.9 Impedanzmethode 103
3.10 Reflektionsmethode beziehungsweise „ramp compression“ 107
3.11 Phasenumwandlungen aus schockwellenphysikalischer Sicht 112
4. Detaillierter Aufbau der Versuchsanordnung sowie Funktion
der Einzelbestandteile 115
4.1 Versuchsanordnung 115
4.2 Explosiveinheit mit PWG und Arbeitsladung 116
4.2.1 Plane-Wave-Generator 116
4.2.2 Arbeitsladung 120
4.2.3 Flugplatte 122
4.2.4 Schaumstoffeinlage 123
4.2.5 Distanzring 124
4.2.6 Beschleunigung der Flugplatte 124
4.3. Probeneinheit 127
4.3.1 Probencontainer 129
4.3.2 Cu-Folie 131
4.3.3 Metallpulver und Probe 132
4.3.4 Probenhalter 135
4.3.5 Probenstempel 135
4.3.6 Schraubenboden 136
4.3.7 Stahlronde 136
4.3.8 HARDOX‐Unterlage 137
5. Berechnung der Zustandsgleichungen für die Impedanzmethode
mit Hilfe der Software MatLab 139
5.1 Randbedingungen 139
5.2 Tests der Möglichkeit der Verwendung der getroffenen Annahmen 142
5.2.1 Gültigkeit der linearen Up‐Us‐Relation anstelle
quadratischer Gleichungen 141
5.2.2 Verwendung der gespiegelten Hugoniot anstelle der
adiabatischen Entspannungskurve 144
5.3 Berechnung der Hugoniot-EoS für die Kollision der
Flugplatte mit dem Probencontainer 145
5.4 Berechnung der Kenngrößen „Druck“ und „Dichte“ für das
Metallpulver mit Hilfe der Rankine‐Hugoniot‐EoS 152
5.5 Überprüfung der mit MatLab berechneten Zustandsgrößen 156
5.6 Berechnung der Kenngröße „Schocktemperatur“ für Kupferpulver
im festen Zustand mit Hilfe der Mie‐Grüneisen‐EoS 158
5.7 Erstellen des X‐t‐Diagramms sowie Berechnung der Kenngröße
„Schockdauer“ mit Hilfe linearer Gleichungssysteme 162
6. Empirisch methodische Weiterentwicklungen der
Synthesemethoden 169
6.1 Vermeidung von Mach-Effekten 169
6.2 Impedanzkorrektur der Probeneinheit 173
6.2.1 Zerstörung des Probencontainers infolge ungünstiger
Impedanzverhältnisse 173
6.2.2 Die Impedanzfunktion als zeit- und ortsaufgelöster
Bestandteil der Hugoniot‐EoS 175
6.2.3 Konsequenzen der orts‐ und zeitabhängigen Impedanz-
funktion für die Materialauswahl der Probeneinheit 180
6.3 Die Rolle der adiabatischen Dekompression unter Einbeziehung
zusätzlicher Volumina. 183
7. Anwendungen 197
7.1 Untersuchungen des Microjettings 197
7.2 Reflektionsmethode mit Impedanzkorrigierter Probeneinheit und
gekapseltem Reflektor 207
7.2.1 Versuchsaufbau 207
7.2.2 Testergebnisse 209
7.2.3 Berechnung der Druck‐ und Temperaturbedingungen
für die Reflektionsmethode mit Hilfe der Software MatLab 211
7.2.3.1 Berechnung des p=f(Up)-Diagramms 211
7.2.3.2 Berechnung der Temperatur sowie der
Geschwindigkeiten Up und Us 215
7.3 Halidbasierte Schockwellenbeanspruchung fluidreicher Phasen 222
7.4 Synthese von rs-AlN sowie -Si3N4 222
7.5 Upscaling der impedanzkorrigierten Probeneinheit mit
vollständiger Probenrückgewinnung 223
7.5.1 Versuchsaufbau 223
7.5.2 Ergebnisse 225
8. Schlussfolgerungen 229
9. Danksagung 234
Literaturverzeichnis 235
|
Page generated in 0.0836 seconds