• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proofs and "Puzzles"

Abramovitz, Buma, Berezina, Miryam, Berman, Abraham, Shvartsman, Ludmila 10 April 2012 (has links) (PDF)
It is well known that mathematics students have to be able to understand and prove theorems. From our experience we know that engineering students should also be able to do the same, since a good theoretical knowledge of mathematics is essential for solving practical problems and constructing models. Proving theorems gives students a much better understanding of the subject, and helps them to develop mathematical thinking. The proof of a theorem consists of a logical chain of steps. Students should understand the need and the legitimacy of every step. Moreover, they have to comprehend the reasoning behind the order of the chain’s steps. For our research students were provided with proofs whose steps were either written in a random order or had missing parts. Students were asked to solve the \"puzzle\" – find the correct logical chain or complete the proof. These \"puzzles\" were meant to discourage students from simply memorizing the proof of a theorem. By using our examples students were encouraged to think independently and came to improve their understanding of the subject.
2

DeltaTick: Applying Calculus to the Real World through Behavioral Modeling

Wilkerson-Jerde, Michelle H., Wilensky, Uri 22 May 2012 (has links) (PDF)
Certainly one of the most powerful and important modeling languages of our time is the Calculus. But research consistently shows that students do not understand how the variables in calculus-based mathematical models relate to aspects of the systems that those models are supposed to represent. Because of this, students never access the true power of calculus: its suitability to model a wide variety of real-world systems across domains. In this paper, we describe the motivation and theoretical foundations for the DeltaTick and HotLink Replay applications, an effort to address these difficulties by a) enabling students to model a wide variety of systems in the world that change over time by defining the behaviors of that system, and b) making explicit how a system\'s behavior relates to the mathematical trends that behavior creates. These applications employ the visualization and codification of behavior rules within the NetLogo agent-based modeling environment (Wilensky, 1999), rather than mathematical symbols, as their primary building blocks. As such, they provide an alternative to traditional mathematical techniques for exploring and solving advanced modeling problems, as well as exploring the major underlying concepts of calculus.
3

Proofs and "Puzzles"

Abramovitz, Buma, Berezina, Miryam, Berman, Abraham, Shvartsman, Ludmila 10 April 2012 (has links)
It is well known that mathematics students have to be able to understand and prove theorems. From our experience we know that engineering students should also be able to do the same, since a good theoretical knowledge of mathematics is essential for solving practical problems and constructing models. Proving theorems gives students a much better understanding of the subject, and helps them to develop mathematical thinking. The proof of a theorem consists of a logical chain of steps. Students should understand the need and the legitimacy of every step. Moreover, they have to comprehend the reasoning behind the order of the chain’s steps. For our research students were provided with proofs whose steps were either written in a random order or had missing parts. Students were asked to solve the \"puzzle\" – find the correct logical chain or complete the proof. These \"puzzles\" were meant to discourage students from simply memorizing the proof of a theorem. By using our examples students were encouraged to think independently and came to improve their understanding of the subject.
4

DeltaTick: Applying Calculus to the Real World through Behavioral Modeling

Wilkerson-Jerde, Michelle H., Wilensky, Uri 22 May 2012 (has links)
Certainly one of the most powerful and important modeling languages of our time is the Calculus. But research consistently shows that students do not understand how the variables in calculus-based mathematical models relate to aspects of the systems that those models are supposed to represent. Because of this, students never access the true power of calculus: its suitability to model a wide variety of real-world systems across domains. In this paper, we describe the motivation and theoretical foundations for the DeltaTick and HotLink Replay applications, an effort to address these difficulties by a) enabling students to model a wide variety of systems in the world that change over time by defining the behaviors of that system, and b) making explicit how a system\''s behavior relates to the mathematical trends that behavior creates. These applications employ the visualization and codification of behavior rules within the NetLogo agent-based modeling environment (Wilensky, 1999), rather than mathematical symbols, as their primary building blocks. As such, they provide an alternative to traditional mathematical techniques for exploring and solving advanced modeling problems, as well as exploring the major underlying concepts of calculus.

Page generated in 0.1187 seconds