Spelling suggestions: "subject:"urban ecology (biology)"" "subject:"urban ecology (ciology)""
1 |
Biological diversity in urban environments : positions, values and estimation methods /Gyllin, Mats. January 2004 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2004. / Appendix consists of reprints of five manuscripts, four of which are co-authored with others. Includes bibliographical references. Also partially available online in PDF format; online version lacks appendix.
|
2 |
Opportunism and the neostriatalhyperstriatum complex in birdsTimmermans, Sarah. January 1999 (has links)
This research seeks to pinpoint the telencephalic structures most closely correlated with feeding flexibility, which is operationalised as feeding innovation rate per taxon. By calculating a weighted average per taxon of 1030 feeding innovations collated from five zones of the world (western Europe, North America, Australia, New Zealand and India), the study shows that relative size of the hyperstriatum ventrale and, to a lesser extent, the neostriatum , best predicts weighted innovation rate; these two structures are thought to be functionally equivalent to the mammalian neocortex. The worst telencephalic predictors of innovation rate are two structures respectively thought to be involved in primary visual projection and the control of stereotyped, species-specific behaviour, the wulst area and the paleostriatum. / A second presumed correlate of behavioural flexibility, taxonomic variation in the use of urbanised and other anthropogenically-modified habitats, shows a consistent pattern in four geographical zones (Great Britain, North America, Australia and New Guinea), as well as a qualitative association with the relative size of the forebrain. There is no linear correlation, however, between urbanisation rate per taxon and either forebrain size or innovation rate, suggesting that other variables like diet, tameness and neophilia may have to be quantified at finer taxonomic levels in future studies of opportunism in habitat use.
|
3 |
Local management and landscape effects on diversity of bees, wasps, and birds in urban green areas /Ahrné, Karin. January 2008 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2008. / Includes reprints of four papers and manuscripts co-authored with others. Includes bibliographical references. Also partially issued electronically via World Wide Web in PDF format; online version lacks reprints of four papers and manuscripts.
|
4 |
Analysis of urban-rural gradients using satellite data /Greenberg, Joshua David. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 121-126).
|
5 |
Urban ecology in Christchurch : a reconciliation ecology approach to enhancing native biodiversity on urban greyfields : a thesis in fulfilment of the requirements for the degree of Doctor of Philosophy at Lincoln University /Greenep, Helen. January 2009 (has links)
Thesis (Ph. D.) -- Lincoln University, 2009. / Also available via the World Wide Web.
|
6 |
An analysis of urban ecological knowledge and behaviour in Wellington, New Zealand : a 90 point thesis submitted to Victoria University of Wellington as partial fulfilment of requirements for the degree of Master of Environmental Studies /Parker, John Russell. January 2009 (has links)
Thesis (M.Env.Stud.)--Victoria University of Wellington, 2009. / Includes bibliographical references.
|
7 |
Opportunism and the neostriatalhyperstriatum complex in birdsTimmermans, Sarah. January 1999 (has links)
No description available.
|
8 |
Management of urban common brushtail possums (Trichosurus vulpecula)Eymann, Jutta. January 2007 (has links)
Thesis (PhD)--Macquarie University, Division of Environmental and Life Sciences, Department of Biological Sciences. / Thesis by publication -- 8 co-authored articles. Includes bibliographical references.
|
9 |
Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseasesKache, Pallavi Amritha January 2023 (has links)
The rise of vector-borne diseases transmitted by the Aedes spp. mosquitoes is attributed, in part, to the dramatic rates of contemporary urbanization. Over the past 30 years, scientists have developed a wealth of knowledge around the drivers of heterogeneity in Aedes-borne disease risk within and between cities. However, in current Aedes-borne disease research, characterizations of “urban” are oversimplified, with the built environment and social institutions of the city often relegated to a background context. To mitigate the spread of Aedes-borne diseases, under the dual global pressures of urbanization and climate change, there is an urgent need to incorporate the multi-dimensionality of urban systems in driving Aedes-borne disease risk. This dissertation is anchored in socio-ecological sciences, and tailored to the complexities of urban eco-epidemiological dynamics. Herein, theory and methods from ecology, epidemiology, geography, and urban science are synthesized to develop and implement a novel urban systems approach for Aedes-borne diseases. T
he first chapter establishes the theoretical foundation for this approach, integrating concepts from three bodies of knowledge: “cities as complex adaptive systems”, hierarchical patch systems theory, and relational geography. In the framework, cities are conceptualized as hierarchically-structured patches of different land uses and characteristics. Patch composition determines localized disease risk, while patch configuration and connectivity contribute to emergent patterns of disease risk and spread. Complexity is added to the system by considering the cross-scale and dynamical processes occurring within a city. Furthermore, the framework establishes how individual and collective social structures interact with the biophysical landscape to generate risk. The empirical research for this dissertation uses a range of data sets, from open source remotely-sensed environmental data and census-derived socio-economic data to fine-scale household survey and entomological data.
Chapter 2 is carried out at the scale of the city, and examines how extreme climate and weather conditions in Colombia differentially affects the onset of peak dengue incidence for urban settlements with varying landscape and socio-economic properties. Using Bayesian spatio-temporal hierarchical models we discovered that extreme temperature anomalies (10–12°C) result in an earlier onset of dengue risk for high-elevation compared to low-elevation settlements, which experience increases in dengue risk two to four months after extreme temperature anomalies. Furthermore, the risk of dengue after extremely dry conditions is higher and extends for a longer duration in highly urban areas compared to areas with a low proportion of the population living in urban settlements. These findings indicate the potential for landscape-specific dengue early warning and forecasting frameworks.
Chapter 3 is based in a mid-sized, rapidly growing city (Ibagué) embedded within the Andes Mountains of Colombia, and establishes homogenous urban typologies of dengue risk. Measuring dengue incidence across census block and higher order urban sections, we show that distinctive signatures of incidence can emerge from interactions between heterogeneous socio-environmental composition and configuration. Finally, Chapter 4 is carried out at the household and neighborhood scale in Ibagué, and examines how water governance and neighborhood-based social processes drive household-level dengue risk. We documented the role of collective societal memory of water scarcity in fostering a culture of water storage. We determined that neighborhood-based metrics of social cohesion do not necessarily translate to dengue household preventative practices and that to scale dengue prevention strategies, public health agencies may consider interventions rooted in “place-making” to foster linkages between perceived neighborhood-level versus household-level risk.
This dissertation demonstrates how trans-disciplinary research bridges urban science, ecology, and public health research communities, and provides a pathway for mosquito-borne disease interventions to be incorporated into national-level early warning systems as well as community-based initiatives that collectively, set cities on more healthy and sustainable trajectories for the 21st century.
|
10 |
Seasonal home range and foraging movements of the Wahlberg's epauletted fruit bat (Epomophorus wahlbergi) in an urban environment.Rollinson, Dominic Paul. January 2012 (has links)
Urbanisation through the process of habitat loss and fragmentation has caused drastic changes in ecosystem dynamics around the world. Many species can no longer survive in these urban areas; however there are those species that have been able to survive and in fact thrive in the newly created habitats. With increasing urbanisation it is important that animals are able to adjust to a life in close association with humans. One such group of organisms which has adjusted well to urbanisation is the suborder Megachiroptera (Chiroptera). Some species from this suborder have benefited from increased food and roost resources in certain urban areas. Exotic fruiting plants (introduced purposely and accidentally) as well as increased cultivated gardens have provided additional food sources in some urban environments, while man-made structures, and increased suitable vegetation, have provided additional roosting opportunities. Although these urban dwelling species live in close association with humans, very little is known of their ecology in urban areas. Wahlberg's epauletted fruit bat Epomophorus wahlbergi is one such species of which little is known of its suburban ecology despite its increased presence in many urban areas.
This study on the ecology of E. wahlbergi was conducted from February to October 2011 in the urban environment of Pietermaritzburg, South Africa. The aim was to examine foraging movements and habitat use of E. wahlbergi in this urban environment. The objectives were to determine seasonal differences in foraging movements and home range sizes in this urban environment. In addition the roosting dynamics and roost characteristics of E. wahlbergi in this urban environment were determined.
In late summer, it was found that individual E. wahlbergi movements ranged considerably, with some bats making extensive flights to different parts of town while others stayed in particular areas throughout; no bats were recorded to have left the urban environment. Some of the larger distances covered in a single night's movements were two and five km. In late summer roosting fidelity varied between individual bats; all the individual bats changed their roosts at least once during late summer. Some individuals had as many as three known daytime roost sites. There was a difference in home range size between the sexes; with females occupying a larger home range size than males. This variation in movement patterns of individual bats suggests that their social interactions, roost site preferences, or dietary preferences vary between individuals in late summer.
A significant difference in home range size and habitat use by E. wahlbergi was found between winter and spring, with home range sizes being larger in winter. The increased home range sizes and habitat use in winter were a consequence of bats feeding on the fruits of the alien invasive Syringa (Melia azedarch) with few other trees in fruit. Consequently bats had to move greater distances for food in winter. In spring, fruit availability was greater and more varied including both indigenous and exotic fruits. Consequently in winter, the bats were more reliant on a few fruiting species to meet their dietary requirements than during spring. Bats changed their roosts regularly in summer, winter and spring. There was considerable variation in roost temperatures however roost temperatures were higher than ambient temperatures. Roosts in man-made structures were higher in temperature than those in natural vegetation. This study suggests the importance of temperature in the selection of daytime roosts, however other factors such as predator avoidance and proximity to food resources are also considered in selection of daytime roosts.
Within the order Chiroptera, species from the suborder Microchiroptera have generally not been well represented in urban areas, it is important that the reasons for this be better understood. Further research is still required to better understand the ecology of urban dwelling species as well as to understand the reasons why many species are not able to adjust to urban environments. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
Page generated in 0.0457 seconds