• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploratory Eddy Covariance Measurements of Surface Heat and CO2 Fluxes in the Roughness Sublayer of an Urban Environment

Burnett, Benjamin F. 01 January 2010 (has links)
In this study eddy covariance was used to measure sensible heat, latent heat, and carbon dioxide fluxes for the months of August, September, and October of 2009 within the roughness sublayer (RSL) of the urban center of Portland, OR. Vehicle traffic and solar radiation were also measured for the month of October. Flux measurements were compared with measurements from other urban areas as a test of reasonableness. CO₂ fluxes were nearly always positive and were strongly correlated with the weekday diurnal traffic cycle. CO₂ fluxes averaged 6.6 μmol/m^²s, which is less than other published measurements in urban areas. Sensible and latent heat fluxes followed the expected diurnal profile associated with solar radiation. Average sensible heat flux decreased as the season changed from summer to fall, moving from an average of 39 W/m^² in August to 12 W/m^² in October. A corresponding increase in latent heat flux was observed during this period, changing from an average of 10 W/m^² in August to 17 W/m^² in October. Heat flux behavior and amplitude was consistent with other urban measurements, though amplitude varies considerably from city to city. Stationarity was shown to positively influence measured CO₂ fluxes, but to have little effect on measured heat fluxes. Preliminary comparisons of October sensible heat and CO₂ fluxes to an inventory-based estimate of vehicle emissions indicate that eddy covariance measurements underestimate the true fluxes by 50%.

Page generated in 0.0888 seconds