• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Historicizing the "public" the making of a social formation in nineteenth century Punjab /

Bhandari, Vivek. January 1998 (has links)
Thesis (Ph. D.)--University of Pennsylvania, 1998. / Includes bibliographical references (p. 277-294).
2

Incremental Diversity : Building for people migrating into cities / Stegvis mångfald : Boende för människor som flyttar in i slummen

Nordström Säfsten, Lisa January 2013 (has links)
If we don't take care of how people are moving into cities, it will continue happen in the form of slums. This project is an attempt, a start in the search of finding a typeology that we clearly need.
3

Urbanization-related sustainability challenges of the emerging megacity of Pune, India: an interdisciplinary analysis

Karutz, Raphael 03 January 2024 (has links)
Viele Länder des globalen Südens erleben aktuell die doppelte Dynamik von rasanter Urbanisierung und globaler Umweltveränderung. Die Schaffung nachhaltiger und widerstandsfähiger Städte ist ein globales Ziel der UN (SDG11). Die Urbanisierung wird mit zahlreichen Vorteilen auf gesellschaftlicher und individueller Ebene in Verbindung gebracht. Gleichzeitig birgt sie jedoch negative Auswirkungen auf die natürlichen Ressourcen, kann städtische Versorgungssysteme überfordern und neue Verwundbarkeiten schaffen. Da die verschiedenen Herausforderungen miteinander verknüpft sind, bedarf es eines interdisziplinären Forschungsansatzes. Im Laufe des letzten Jahrzehnts hat sich der Food-Water-Energy (FWE)-Nexus für sektorübergreifende Analysen etabliert. In dieser Dissertation wird ein Beitrag zum Verständnis des FWE-Nexus in schnell urbanisierenden Regionen des globalen Südens geleistet und es werden Defizite in der aktuellen Debatte adressiert. Im Mittelpunkt der Arbeit steht die Millionenstadt Pune in Indien. Um ein umfassendes Systemverständnis zu erlangen, wird in Zusammenarbeit mit lokalen Stakeholdern zunächst eine Sammlung von 22 FWE-Herausforderungen auf verschiedenen Ebenen erstellt. In den anschließenden vertieften Analysen werden ausgewählte urbanisierungsbezogene Herausforderungen untersucht, insbesondere die zukünftige Entwicklung des Stadtwachstums und die Zuwanderung nach Pune. Letztere ist einer der wichtigsten Wachstumstreiber. Zu diesem Zweck wird ein neuartiger Modellierungsansatz vorgestellt, bei dem nationale sozioökonomische Szenarien auf die Stadtebene herunterskaliert, und in räumlich explizite Darstellungen von bebauter Fläche und Bevölkerungsdichte übersetzt werden. Diese erlauben Analysen potenzieller FWE-Nexus-Herausforderungen in Zukunft. Die Untersuchung der Zuwanderung nach Pune basiert auf qualitativen und quantitativen Datenquellen mittels Mixed-Methods-Verfahren. Das in allen Szenarien erwartete signifikante Stadtwachstum ist mit einer Konzentration des Ressourcenbedarfs in der Stadt, einem erheblichen Verlust an fruchtbarem Land und einer Zunahme von Überschwemmungsrisiken verbunden. In Bezug auf Zuwanderung nach Pune spielt der Klimawandel in Form von Dürren eine signifikante, wenn auch unterbelichtete, Rolle. Neuankömmlinge, die aus dem ländlichen Raum oder aus anderen Bundesländern stammen, sowie jene, die gegenwärtig in informellen Siedlungen leben, waren zum Zeitpunkt der Migrationsentscheidung überproportional stark von Dürren betroffen. Die Analysen beleuchten die bidirektionalen Verflechtungen zwischen Urbanisierung und FWE-Nexus-Aspekten: Die wachsende Stadt ist bereits heute Treiber und zugleich Leidtragende von FWE-Nexusproblemen. Diese müssen umfassend angegangen werden, um Wege zu einer nachhaltigen und resilienten urbanen Zukunft zu sichern.:1. General Introduction: Context, Approach, and Summary of Results 1.1. Background and Research Motivation 1.2. Case study site Pune 1.3. Knowledge Gaps 1.4. Problem Definition and Research Questions 1.5. Research Approach and Methodological Overview 1.5.1. Identification of the main sustainability challenges related to urbanization 1.5.2. Modeling of future urban growth 1.5.3. In-depth investigation of mobility to Pune 1.5.4. Integration 1.6. Summary and Linking of Results 1.6.1. Results of Paper 1 1.6.2. Results of Paper 2 1.6.3. Results of Paper 3 1.7. Discussion 1.8. Conclusion and Outlook Paper 1: Capturing Stakeholders’ Challenges of the Food–Water–Energy Nexus— A Participatory Approach for Pune and the Bhima Basin, India Paper 2: On Farmland and Floodplains – Modeling Urban Growth Impacts Based on Global Population Scenarios in Pune, India Paper 3: Exploring the Relationship Between Droughts and Rural-to-urban Mobility – a Mixed-Methods Approach for Pune, India Appendix / Many countries in the global South are experiencing the combined dynamics of rapid urbanization and global environmental change. The provision of sustainable and resilient cities is a declared global goal (SDG11). Urbanization has been associated with multiple benefits on societal and individual level. However, it can also entail adverse impacts on natural resources, overstrain supply systems, and create new vulnerabilities. The interlinked nature of challenges requires an interdisciplinary research approach. Over the last decade, the Food-Water-Energy (FWE) nexus has been popularized for inter-sectoral analyses. This thesis attempts to add to the understanding of the FWE nexus in rapidly urbanizing regions of the global South and to address shortcomings in the current debate. The work is centered around the emerging megacity of Pune in India. For a comprehensive understanding of the system under investigation, a set of 22 FWE challenges on various levels is co-produced with local stakeholders. Subsequent analyses investigate selected urbanization-related challenges in-depth, namely future trajectories of the city’s growth and in-migration as one of its main drivers. To that end, a novel modeling approach is presented, downscaling established high-level socioeconomic scenarios to the city level and translating them into built-up area mapped by a cellular automaton. Population surfaces are then generated via dasymetric mapping. The resulting spatial configurations of built-up and population scenarios are analyzed in terms of potential FWE nexus challenges. The analysis of in-migration to Pune is based on qualitative and quantitative data sources and their mixed methods analysis. The significant demographic, economic, and spatial growth expected in all scenarios is associated with a concentration of resource demands in the city, significant loss of fertile land, and an increase in flood-affected population and infrastructure. As to in-migration, climate change has played a role in mobility to Pune in the form of droughts, especially for recent arrivals. Rural-origin migrants, those who came from other states, and who currently live in informal settlements were disproportionately affected by droughts at origin. The results shed light on the bidirectional interlinkages between urbanization and FWE nexus issues: Today already, the growing city of Pune drives, and suffers from, nexus challenges. These have to be addressed comprehensively in order to secure pathways to a sustainable and resilient urban future.:1. General Introduction: Context, Approach, and Summary of Results 1.1. Background and Research Motivation 1.2. Case study site Pune 1.3. Knowledge Gaps 1.4. Problem Definition and Research Questions 1.5. Research Approach and Methodological Overview 1.5.1. Identification of the main sustainability challenges related to urbanization 1.5.2. Modeling of future urban growth 1.5.3. In-depth investigation of mobility to Pune 1.5.4. Integration 1.6. Summary and Linking of Results 1.6.1. Results of Paper 1 1.6.2. Results of Paper 2 1.6.3. Results of Paper 3 1.7. Discussion 1.8. Conclusion and Outlook Paper 1: Capturing Stakeholders’ Challenges of the Food–Water–Energy Nexus— A Participatory Approach for Pune and the Bhima Basin, India Paper 2: On Farmland and Floodplains – Modeling Urban Growth Impacts Based on Global Population Scenarios in Pune, India Paper 3: Exploring the Relationship Between Droughts and Rural-to-urban Mobility – a Mixed-Methods Approach for Pune, India Appendix
4

Modelling Spatial Patterns of Landsacape Dynamics

Aithal, Bharath H January 2014 (has links) (PDF)
Landscape is a heterogeneous collection of visibly distinct features of various elements of land and its various forms on the earth surface. Its pattern is subjected to disturbances and undergo rapid alterations in its grain sizes. The evolving patterns of landscape define and decide various parameters for the planning and management of resources. These dynamic systems possess both spatial and temporal complexity. Exploitation of natural resources and drastic land cover changes have given rise to significant impacts on ecosystem structure and dynamics. The functional abilities (bio-geo chemical cycling, hydrological cycling, etc.) of the landscape are basically dependent on the structure and its complexity. This necessitates inventorying, mapping and modeling of landscape dynamics. Patterns and scale are central issues that are essential to understand complex interactions and driving forces. Large scale changes have been rapid and occurring since industrialization and urbanisation in the last century. The exponential growth of cities has been noticed since the industrial revolution and as transport sector changed the mobility of the masses drastically. Urbanisation interacts with the neighboring landscape structures in the form of commuter’s flow, pollution, obtaining food grain, which create dispersed growth or sprawl in between the metropolis and the semi urban area, and these areas are often devoid of basic amenities due to lack of prior information and necessitates predictions of such growth while planning, policy and decision-making. Planning determines appropriate future action through a sequence of choices that tend to occur. To understand uncertain conditions, planners and city managers need vital comprehensive information about the temporally evolving landscape and try to predict the future, for effective decisions. The quality of planning and its decision processes can be substantially improved when the required information is handled appropriately and efficiently. This explains that an effective planning requires descriptive, predictive, and prescriptive information inputs for sustainable resource management. Therefore, modeling future trends becomes a necessary part of planning. Urban growth models help in modelling future trends that can be an efficient and effective support tool. In recent years, the confluence of developments in Remote sensing, Geographic Information System and Image processing, Computational Urban Growth and Urban Land-use Modeling has made possible in timely provision of information inputs to planners. In the context of Indian cities, this research attempts to study the patterns of urban growth and the rate of change of that growth using various techniques such as Land use, land cover models, Gradient and zonal approach, spatial metrics and urban growth models. Indian cities are divided based on population into various categories. These categories were considered separately and dealt with sample number of cities. This works helps in understanding the change pattern of rapidly urbanising, moderately urbanising and rural landscape is accomplished using various metrics and gradients. The research, is mainly aimed at understanding the pattern of growth and device computational urban growth model using well known techniques and develop a suitable technique in order to understand the context of agents and their role in modelling future urban growth and estimate the rate of loss of other land use categories due to urban growth. Satellite images for different time series was used to study the pattern of urban growth in the study areas. Well know indicators were derived from the data. This was further used to model one of the rapidly urbanising cities based on scenario no agents/factor and with agents of growth using city development plans and in absence of it. This adaptation to Indian context will help in gaining better understanding of the urban growth system in various levels of cities classified, and thus help in providing inputs and specific information of future growth for urban planners and city managers to provide better basic amenities and for sustainable growth of cities. The objective of the proposed research is to understand and model the spatio temporal patterns of landscape dynamics. This involves i. Analysis of Landscape dynamics using multi-resolution (spatial, temporal and spectral) data. ii. Quantifying landscape dynamics using landscape metrics and associated landscape parameters. iii. Modeling and geo-visualisation of landscape dynamics in rapidly urbanizing, moderately urbanising and rural landscape using these parameters. iv. Model the landscape dynamics using soft computing techniques. The thesis consists of nine chapters. Chapter 1 introduces the basic concepts such as landscape, landscape dynamics, use of spatio-temporal data to monitor landscape dynamics, geo-visualisation of landscape dynamics, research gaps and motivation for taking up the research in this domain. Chapter 2 presents the study region, which are broadly grouped as (i) Rapidly urbanizing landscapes (corresponding to Tier I Cities in India), (ii) Moderately urbanizing landscapes (Tier II cities, chosen select Tier II cities in Karnataka), and (iii) Landscape experiencing minimal urbanisation (rural landscape). Chapter 3 discusses the material and method adopted for understanding landscape dynamics and geo-visualisation of landscape dynamics Chapter 4 presents the landscape dynamics in rapidly urbanizing landscape (Bangalore) in India. Spatial pattern analyses are done through metrics using zonal- gradient approach. Chapter 5 analyses the environmental sustainability aspects considering one case study of rapidly urbanizing landscape – Bangalore Chapter 6 discusses urbanisation process and patterns across macro cities in India. Similarly Chapter 7 discusses the urbanisation pattern in Tier II cities (in Karnataka) and Chapter 8 presents the rural landscape dynamics Geo-visualisation of a rapidly urbanizing landscape (Bangalore) through techniques such as Cellular Automata – Markov Chain, land change modeler (LCM), Geographical land use change modeler (GEOMOD), Markov Cellular automata based process of deriving agent’s behavior using Fuzziness in the dataset and Analytical Hierarchal process. Further research in progress in this domain focusses on integration of various agents and evaluation of proposed development plans and likely scenario of integrating land use with mobility. Keyword: landscape, landscape dynamics, urbanisation, urban growth, urban sprawl, urban footprint, modelling, geo-visualisation

Page generated in 0.113 seconds