• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detec??o e diagnostico de agarramento em v?lvulas posicionadoras

Venceslau, Allan Robson Silva 31 January 2013 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-03-02T22:51:52Z No. of bitstreams: 1 AllanRobsonSilvaVenceslau_DISSERT.pdf: 4005156 bytes, checksum: 19abdee5a925ca31403b67505767b149 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-03-03T23:46:03Z (GMT) No. of bitstreams: 1 AllanRobsonSilvaVenceslau_DISSERT.pdf: 4005156 bytes, checksum: 19abdee5a925ca31403b67505767b149 (MD5) / Made available in DSpace on 2016-03-03T23:46:03Z (GMT). No. of bitstreams: 1 AllanRobsonSilvaVenceslau_DISSERT.pdf: 4005156 bytes, checksum: 19abdee5a925ca31403b67505767b149 (MD5) Previous issue date: 2013-01-31 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico - CNPq / Agarramento, ou atrito est?tico, em v?lvulas posicionadoras ? um problema muito comum nos processos industriais modernos. Recentemente, muitos estudos s?o desenvolvidos para tentar entender, modelar e detectar esse tipo de problema. Por?m quantificar o agarramento ainda ? um desafio. Uma vez que a posi??o da v?lvula (mv) ? normalmente desconhecida em um processo industrial, o principal desafio ? diagnosticar agarramento tendo conhecimento apenas dos sinais de sa?da do processo (pv) e o sinal de controle (op). Neste trabalho ? apresentada uma proposta baseada em Redes Neurais Artificiais para detectar e quantificar o grau de agarramento em v?lvulas utilizando apenas as informa??es de pv e op. Diferentes m?todos para o pr?-processamento do conjunto de treinamento da Rede Neural s?o apresentados. Esses m?todos s?o baseados no c?lculo de Centroide e de Transformada de Fourier. A proposta ? validada atrav?s de um processo simulado e os resultados obtidos foram satisfat?rios. / Valve stiction, or static friction, in control loops is a common problem in modern industrial processes. Recently, many studies have been developed to understand, reproduce and detect such problem, but quantification still remains a challenge. Since the valve position (mv) is normally unknown in an industrial process, the main challenge is to diagnose stiction knowing only the output signals of the process (pv) and the control signal (op). This paper presents an Artificial Neural Network approach in order to detect and quantify the amount of static friction using only the pv and op information. Different methods for preprocessing the training set of the neural network are presented. Those methods are based on the calculation of centroid and Fourier Transform. The proposal is validated using a simulated process and the results show a satisfactory measurement of stiction.

Page generated in 0.0551 seconds