• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 32
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant / Non-linear interactions of waves and vortices in stratified or rotating fluids

Bordes, Guilhem 16 July 2012 (has links)
Les ondes gravito-inertielles jouent un rôle majeur dans les échanges d'énergie globaux sur la planète. Si la génération des ondes est bien connue dans l'atmosphère et l'océan, le devenir de ces ondes au cours de leur propagation n'est pas complètement défini aujourd'hui. Ces ondes peuvent interagir de façon non-linéaire avec elles-mêmes et créer des structures de plus petite échelle qui vont se dissiper plus facilement. Ainsi, le phénomène d'instabilité paramétrique sous-harmonique (PSI), a été étudié de façon expérimentale. Nous avons effectué la première mise en évidence expérimentale de l'interaction de trois ondes planes inertielles bi-dimensionnelles, sous la forme d'une triade résonnante. Cette étude améliore en outre la compréhension de la turbulence en rotation. Les ondes internes peuvent aussi créer, ou interagir avec des écoulements lents de grande échellequi peuvent modifier la biodiversité au fond des océans. Nous avons mis en évidence une situation expérimentale à l'origine d’un tel écoulement moyen induit par les ondes et, à l'aide d'un modèle théorique simplifié, nous avons expliqué la formation de ces écoulements. Enfin, on étudie également des tourbillons en fluide stratifié pour permettre de futures études sur l'interaction d'ondes gravito-inertielles avec des tourbillons. / Inertia-gravity waves play a major role in the global transfer of energy on Earth. Even if wave generation is well understood in the atmosphere and in the ocean, their subsequent evolution is not completely understood. These waves can interact nonlinearly with themselves and create small-scales structures that dissipate more rapidly. Motivated by this, the phenomenon of parametric subharmonic instability (PSI), was studied experimentally. We conducted the first laboratory demonstration of the interaction of three two-dimensional inertial plane waves, as a resonant triad. Inertia-gravity waves can also interact with, and create, mean flows of large scale that can modify the transport of energy, chemical and biological compounds, and thereby have an impact on biodiversity in the ocean. We therefore also demonstrated an experimental situation that gives rise to such a flow field and using a simplified theoretical model, we explained the formation of this flow. Finally, we performed some studies of vortices in stratified fluid, to assist future studies of the interaction of inertia-gravity waves with vortices.
32

Two-phase flow investigation in a cold-gas solid rocket motor model through the study of the slag accumulation process

Tóth, Balázs 22 January 2008 (has links)
The present research project is carried out at the von Karman Institute for Fluid Dynamics (Rhode-Saint-Genèse, Belgium) with the financial support of the European Space Agency.<p><p>The first stage of spacecrafts (e.g. Ariane 5, Vega, Shuttle) generally consists of large solid propellant rocket motors (SRM), which often consist of segmented structure and incorporate a submerged nozzle. During the combustion, the regression of the solid propellant surrounding the nozzle integration part leads to the formation of a cavity around the nozzle lip. The propellant combustion generates liquefied alumina droplets coming from chemical reaction of the aluminum composing the propellant grain. The alumina droplets being carried away by the hot burnt gases are flowing towards the nozzle. Meanwhile the droplets may interact with the internal flow. As a consequence, some of the droplets are entrapped in the cavity forming an alumina puddle (slag) instead of being exhausted through the throat. This slag reduces the performances.<p><p>The aim of the present study is to characterize the slag accumulation process in a simplified model of the MPS P230 motor using primarily optical experimental techniques. Therefore, a 2D-like cold-gas model is designed, which represents the main geometrical features of the real motor (presence of an inhibitor, nozzle and cavity) and allows to approximate non-dimensional parameters of the internal two-phase flow (e.g. Stokes number, volume fraction). The model is attached to a wind-tunnel that provides quasi-axial flow (air) injection. A water spray device in the stagnation chamber realizes the models of the alumina droplets, which are accumulating in the aft-end cavity of the motor.<p><p>To be able to carry out experimental investigation, at first the the VKI Level Detection and Recording(LeDaR) and Particle Image Velocimetry (PIV) measurement techniques had to be adapted to the two-phase flow condition of the facility.<p><p>A parametric liquid accumulation assessment is performed experimentally using the LeDaR technique to identify the influence of various parameters on the liquid deposition rate. The obstacle tip to nozzle tip distance (OT2NT) is identified to be the most relevant, which indicates how much a droplet passing just at the inhibitor tip should deviate transversally to leave through the nozzle and not to be entrapped in the cavity.<p><p>As LeDaR gives no indication of the driving mechanisms, the flow field is analysed experimentally, which is supported by numerical simulations to understand the main driving forces of the accumulation process. A single-phase PIV measurement campaign provides detailed information about the statistical and instantaneous flow structures. The flow quantities are successfully compared to an equivalent 3D unsteady LES numerical model.<p><p>Two-phase flow CFD simulations suggest the importance of the droplet diameter on the accumulation rate. This observation is confirmed by two-phase flow PIV experiments as well. Accordingly, the droplet entrapment process is described by two mechanisms. The smaller droplets (representing a short characteristic time) appear to follow closely the air-phase. Thus, they may mix with the air-phase of the recirculation region downstream the inhibitor and can be carried into the cavity. On the other hand, the large droplets (representing a long characteristic time) are not able to follow the air-phase motion. Consequently, a large mean velocity difference is found between the droplets and the air-phase using the two-phase flow measurement data. Therefore, due to the inertia of the large droplets, they may fall into the cavity in function of the OT2NT and their velocity vector at the level of the inhibitor tip.<p><p>Finally, a third mechanism, dripping is identified as a contributor to the accumulation process. In the current quasi axial 2D-like set-up large drops are dripping from the inhibitor. In this configuration they are the main source of the accumulation process. Therefore, additional numerical simulations are performed to estimate the importance of dripping in more realistic configurations. The preliminary results suggest that dripping is not the main mechanism in the real slag accumulation process. However, it may still lead to a considerable contribution to the final amount of slag.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.1048 seconds