421 |
Targeting IL-12 and/or IL-23 by employing peptide-based vaccines in the amelioration of murine colitisGuan, Qingdong 08 1900 (has links)
Overexpression of IL-12 and IL-23 has been implicated in the pathogenesis of Crohn’s disease. Targeting these cytokines with monoclonal antibodies has emerged as an effective therapy, but one with adverse reactions. In this study, we sought to develop peptide-based virus-like particle vaccines specific to p40 unit (shared by IL-12 and IL-23) or IL-12 (p35) or IL-23 (p19) and evaluate the effects of the vaccine in 2,4,6-trinitrobenzene sulphonic acid (TNBS)- and dextran sodium sulfate (DSS)-induced acute and chronic murine colitis.
Three vaccines against p40 induced high-titered and long-lasting antibodies to IL-12, IL-23 and p40 without the use of adjuvants. Vaccine-induced antibodies could block IL-12- and IL-23-induced biological functions in vitro dose-dependently. One of the three p40 vaccines was selected for further evaluation in acute and chronic colitis. Administration of the vaccine before or after the commencement of TNBS or DSS delivery, significantly improved body weight loss and decreased inflammatory scores, collagen deposition, and the expression of p40, IL-12, IL-23, IL-17 and TNF in colon tissues, compared with mice receiving carrier protein (HBcAg) or saline.
Moreover, in mesenteric lymph nodes, vaccinated mice exhibited a trend to lower percentages of Th1 cells in acute colitis and of Th17 cells in chronic colitis compared to carrier and saline controls. Vaccinated mice also had higher ratios of Treg/Th1 and Treg/Th17 and higher percentages of apoptosis in Th1 and Th17 cells than controls. Vaccine treatment decreased the infiltration of CD11c+ cells into the gut, but promoted the production of IL-10 from these cells. Safety evaluation indicated that vaccine immunization did not increase the susceptibility to the infection of chlamydia muridarum.
Two vaccines specific to IL-12 (against p35) and one vaccine to IL-23 (against p19) were also developed. They induced specific antibodies against IL-12 and IL-23, respectively. IL-23p19 vaccine immunization, not IL-12p23 vaccine, ameliorated TNBS-induced chronic colitis.
In summary, IL-12/IL-23p40 vaccine treatment ameliorated murine colitis through rebalancing Th1/Th17/Treg responses, promoting Th1 and Th17 apoptosis, and promoting IL-10 production, and did not increase the severity of chlamydia muridarum infection. This vaccine strategy may provide a novel long-term treatment for Crohn’s disease.
|
422 |
Therapeutic Cancer Vaccines Targeting Molecules Associated with Tumor AngiogenesisFemel, Julia January 2014 (has links)
Induction of an endogenous antibody response by therapeutic vaccination could provide an alternative to cost-intensive monoclonal antibody-based treatments for cancer. Since the target of a cancer vaccine will most likely be a self-antigen, self-tolerance of the immune system must be circumvented. Using fusion proteins consisting of the self-antigen to be targeted and a part derived from a foreign antigen, it is possible to break tolerance against the self-antigen. Furthermore, a potent adjuvant is required to support an immune response against a self-molecule. Currently no adjuvant suitable for this purpose is approved for use in humans. This thesis describes the development of a therapeutic vaccine targeting the vasculature of tumors. As tumor cells have developed strategies to escape immune surveillance, targeting of molecules associated with the tumor stroma is an interesting alternative. The alternatively spliced extra domain-A and B (ED-A and ED-B) of fibronectin and the glycan-binding protein galectin-1 are selectively expressed during events of tumor angiogenesis. We have designed recombinant proteins to target ED-B, ED-A and galectin-1, containing bacterial thioredoxin (TRX) as a non-self part, resulting in TRX-EDB, TRX-EDA and TRX-Gal-1. Vaccination against ED-B induced anti-ED-B antibodies and inhibited growth of subcutaneous fibrosarcoma. Immunization against ED-A decreased tumor burden and reduced the number of lung metastases in the MMTV-PyMT model for metastatic mammary carcinoma in a therapeutic setting. Analysis of the tumor tissue from ED-B and ED-A-immunized mice indicated an attack of the tumor vasculature by the immune system. Finally, we show that galectin-1 immunization reduced tumor burden and increased leukocyte numbers in the tumor tissue. Galectin-1 is pro-angiogenic and immunosuppressive, and therefore allows simultaneous targeting of fundamental characteristics of tumorigenesis. We furthermore show that the biodegradable squalene-based Montanide ISA 720 combined with CpG oligo 1826 (M720/CpG) is at least as potent as Freund’s adjuvant with respect to breaking self-tolerance, when comparing several immunological parameters. Freund’s is a potent but toxic adjuvant used in the majority of preclinical studies. The work presented in this thesis shows that therapeutic cancer vaccines targeting the tumor vasculature are a feasible and promising approach for cancer therapy.
|
423 |
Perceptions towards the A(H1N1) vaccine among risk groups : A study conducted in Stockholm, SwedenRaske, William January 2014 (has links)
Influenza type A is associated with most severe complications to humans and is historically recognized to cause pandemics. If a new subtype replicates well in humans it might upsurge in a new pandemic strain, one such example is the Influenza A (A/H1N1). The A/H1N1 pandemic in 2009/2010 was not as severe in Sweden as expected. Criticism has targeted the fact that authorities having misjudged the need for vaccination, concerns have been raised regarding the effect of the campaign on people’s willingness to be vaccinated in the future. This study aims to investigate if there are significant differences in attitudes towards the vaccination of A/H1N1 among different population groups in Stockholm, Sweden. The main groups explored are risk groups and non- risk groups, defined by objective definitions. A quantitative method was approached using questionnaires. The result indicates that people in a risk group and vaccinated had more favorable attitudes towards the vaccine compared to other groups. They also expressed less troubled concerns regarding vaccine safety and were more likely to immunize referring to inadequate health. It is evident that people at risk also define themselves as more vulnerable, in which vaccination is more acceptable. The expressed attitudes are in such dependent on risk-perceptions and vaccine status.
|
424 |
Preparing for a Safety Evaluation of Rotavirus Vaccine Using Health Services Data in Ontario: The Development of a Diagnostic Algorithm for Intussusception, an Estimation of Baseline Incidence and an Evaluation of MethodsDucharme, Robin Beverly 19 December 2013 (has links)
In view of the recent implementation of a publicly funded rotavirus vaccination program in Ontario, we undertook studies to help guide the design of a safety evaluation of the vaccine with respect to intussusception. We used administrative data to develop and validate an algorithm for intussusception, and quantified its incidence in Ontario. We also conducted a systematic review of study designs used to evaluate post-licensure vaccine safety, and discussed each design’s strengths and weaknesses.
The validated algorithm for intussusception was sensitive (89.3%) and highly specific (>99.9%). We observed the highest mean incidence (34 / 100,000) in males <1 year of age.
While other designs are more robust, the inability to ascertain individual vaccination status from Ontario’s administrative data dictated our selection of an ecological design for safety evaluation of rotavirus vaccine.
Data assimilated from this thesis represent a critical step toward the timely evaluation of rotavirus vaccine safety in Ontario.
|
425 |
Targeting IL-12 and/or IL-23 by employing peptide-based vaccines in the amelioration of murine colitisGuan, Qingdong 08 1900 (has links)
Overexpression of IL-12 and IL-23 has been implicated in the pathogenesis of Crohn’s disease. Targeting these cytokines with monoclonal antibodies has emerged as an effective therapy, but one with adverse reactions. In this study, we sought to develop peptide-based virus-like particle vaccines specific to p40 unit (shared by IL-12 and IL-23) or IL-12 (p35) or IL-23 (p19) and evaluate the effects of the vaccine in 2,4,6-trinitrobenzene sulphonic acid (TNBS)- and dextran sodium sulfate (DSS)-induced acute and chronic murine colitis.
Three vaccines against p40 induced high-titered and long-lasting antibodies to IL-12, IL-23 and p40 without the use of adjuvants. Vaccine-induced antibodies could block IL-12- and IL-23-induced biological functions in vitro dose-dependently. One of the three p40 vaccines was selected for further evaluation in acute and chronic colitis. Administration of the vaccine before or after the commencement of TNBS or DSS delivery, significantly improved body weight loss and decreased inflammatory scores, collagen deposition, and the expression of p40, IL-12, IL-23, IL-17 and TNF in colon tissues, compared with mice receiving carrier protein (HBcAg) or saline.
Moreover, in mesenteric lymph nodes, vaccinated mice exhibited a trend to lower percentages of Th1 cells in acute colitis and of Th17 cells in chronic colitis compared to carrier and saline controls. Vaccinated mice also had higher ratios of Treg/Th1 and Treg/Th17 and higher percentages of apoptosis in Th1 and Th17 cells than controls. Vaccine treatment decreased the infiltration of CD11c+ cells into the gut, but promoted the production of IL-10 from these cells. Safety evaluation indicated that vaccine immunization did not increase the susceptibility to the infection of chlamydia muridarum.
Two vaccines specific to IL-12 (against p35) and one vaccine to IL-23 (against p19) were also developed. They induced specific antibodies against IL-12 and IL-23, respectively. IL-23p19 vaccine immunization, not IL-12p23 vaccine, ameliorated TNBS-induced chronic colitis.
In summary, IL-12/IL-23p40 vaccine treatment ameliorated murine colitis through rebalancing Th1/Th17/Treg responses, promoting Th1 and Th17 apoptosis, and promoting IL-10 production, and did not increase the severity of chlamydia muridarum infection. This vaccine strategy may provide a novel long-term treatment for Crohn’s disease.
|
426 |
Serological and molecular epidemiological outcomes after two decades of universal infant hepatitis B virus (HBV) vaccination in Nunavut, CanadaHuynh, Chris 09 January 2015 (has links)
Background: Chronic HBV within the Canadian Arctic is considered endemic (>2% prevalence). To control endemic rates in Nunavut, a vaccination program was initiated approximately 20 years ago, targeted at newborns and grade school students, as an interim catch-up program, such that all individuals born after 1980 are potentially vaccinated. This study investigates the efficacy of these programs and is the first seroepidemiological survey to determine HBV prevalence in Nunavut in the post-vaccination era. Methods: Anonymized serum specimens scheduled for destruction following routine medical testing were collected from individuals granting consent. Specimens were tested for antibodies to HBV (anti-HBs, anti-HBc) and hepatitis C virus. Anti-HBc positive samples were further tested for surface antigen (HBsAg) positivity, and HBV DNA was extracted from HBsAg positive samples in order to perform molecular characterization. Results: 4802 specimens were collected according to the age distribution of Nunavut, with vaccine age cohort specimens comprising just over half of all collected specimens. Overall anti-HCV+ was 0.55%, with all positivity observed among those aged 24 to 69 years old. Total anti-HBc+ prevalence was 9.40%; however, a 10-fold decrease in the rate of HBV exposure was noted among those born after 1980 compared to those born before (1.89% vs 20.1%, p<0.001). HBsAg positivity was primarily documented in individuals born before 1980 (2.55%), although cases still occurred among the vaccine age cohort (0.21%). HBV subgenotype B5 (HBV/B5), known to be unique among Inuit and Alaska Native people, was the most prevalent genotype observed (82%). Vaccine-based antibody as the sole serological marker was evident in the vaccine age cohort, although the rate of decay with increasing age was much greater than anticipated. Conclusion: Nearly two decades after the advent of HBV vaccination in Nunavut, HBV prevalence has decreased to 1.17%, indicating a non-endemic or low risk prevalence. However, the persistence of infection and a lower than expected prevalence of vaccine-based immunity in the vaccine age cohort will require further investigation to understand the causes and consequences.
|
427 |
Identifizierung schutzvermittelnder Antigene von Aspergillus fumigatus für eine Impfstoffentwicklung zur Verhütung invasiver Aspergillosen bei Leukämie-Patienten / Identification of protection-mediating antigens of Aspergillus fumigatus for vaccine development for the prevention of invasive aspergillosis in patients with leukemiaHerrmann, Sahra 30 June 2014 (has links)
A.fumigatus ist der häufigste Erreger invasiver, meist tödlich verlaufender Aspergillosen bei stark immunsupprimierten Patienten. Eine natürliche Resistenz gegen den Pilz wird durch das angeborene Immunsystem vermittelt, jedoch wurde im Tierversuch auch eine erworbene Immunität nach einer überlebten systemischen Infektion festgestellt. Deshalb sollten Antigene, die im Verlauf der Erkrankung vom Pilz exprimiert werden, eine spezifische und protektive Immunantwort hervorrufen können. Für die Entwicklung eines Impfstoffes ist die Identifikation solcher Antigene Voraussetzung. Im Mausmodell wurden insgesamt 31 rekombinante Aspergillus-Antigene in Kombinationen getestet. Als besonders erfolgversprechend stellte sich ein trivalenter Impfstoff, bestehend aus Enolase, HSP90 und TBP (Thiamin-Biosyntheseprotein), dar. Im Vergleich zu einer ungeimpften Kontrollgruppe fand sich bei der Impfgruppe eine signifikante Protektion gegenüber einer an sich letalen Aspergillus-Infektion. Bei einer Wiederholung des Versuchs ließ sich der Schutz bestätigen, war jedoch nicht mehr im Signifikanzbereich. Mögliche Gründe hierfür sind die unsichere Aufnahme der Infektionsdosis durch nasale Verabreichung oder auch eine „Stille Feiung“ der Mäuse durch Einatmung von Konidien aus der Umgebung vor der eigentlichen Infektion. Eine Verbesserung der Versuchsbedingungen könnte durch die Verwendung individuell ventilierter Käfige (ohne Sporenbelastung aus der Raumluft) und/oder eine Vergrößerung der Versuchsgruppen erreicht werden.
Da die Konidienoberfläche den ersten Kontakt mit dem Wirt vermittelt, könnten Konidienoberflächenproteine sowohl vielversprechende Impfstoffkandidaten als auch Virulenzfaktoren sein. Im Tierversuch wurde hier nachgewiesen, dass das stark exprimierte Konidienoberflächenprotein HP16 entscheidend an der Virulenz von A.fumigatus beteiligt ist. Dabei stellte sich der Virulenzunterschied zwischen der Deletionsmutante ΔHP16 und dem Wildtyp D141 als hoch signifikant dar. Der Vergleich zwischen der Deletionsmutante ΔHP16 und der Komplementmutante ΔHP16K erbrachte eine komplett restaurierte Virulenz. Da HP16 zumindest in vitro vorwiegend auf Konidien lokalisiert ist, könnte sich hier ein Angriffspunkt für eine präemptive Therapie bzw. für eine Prophylaxe der invasiven Aspergillose ergeben. HP16 wurde auch als rekombinantes Protein hergestellt. Das rekombinante Antigen soll als Impfstoffkandidat in zukünftigen Projekten eingesetzt werden.
Letztlich wurde noch Aspf3, eine Peroxireduktase von A.fumigatus, als ein weiterer Target- und Impfstoffkandidat untersucht. Die stark verminderte Virulenz der Deletionsmutante ΔAspf3 und eine zumindest teilrestaurierte Virulenz durch die hergestellte Komplementmutante ΔAspf3K lassen vermuten, dass Aspf3 während der Pathogenese ebenfalls eine entscheidende Rolle spielt.
|
428 |
Development and clinical translation of microneedles for insulin delivery and self-vaccinationNorman, James Jefferis 12 1900 (has links)
Type-1 diabetes and influenza cause significant illness and unnecessary medical costs despite the existence of insulin for maintenance of diabetes and a vaccine for prevention of influenza. This dissertation describes three studies on the development and clinical translation of microneedles to improve the administration of these biopharmaceuticals. The first study reports on a sharp-tipped hollow metal microneedle designed to reduce manufacturing costs, improve insertion into skin, and improve fluid flow compared to other hollow microneedles used for drug delivery. The results showed sharp-tipped metal microneedles could be fabricated using an inexpensive electroplating and sacrificial micromolding process. Single-microneedle devices made by this method achieved high flow rates and delivered model drugs into tissue. The second study reports on insulin delivery using microneedles in children with type-1 diabetes. The results showed microneedle insertion was less painful, which is a promising result for improving injection compliance in children. Additionally, microneedle delivery showed rapid onset of insulin action compared to subcutaneous catheter delivery, which may enable automatic closed-loop insulin therapy. This was the first study of drug delivery to children using microneedles. The last study reports on microneedle patches for self-vaccination against influenza. Human subjects were recruited from greater Atlanta, were asked to self-administer placebo microneedle patches, and were then given a dynamic questionnaire to determine their views and preferences regarding influenza vaccination using microneedles compared to conventional intramuscular injection. The results showed that microneedles were usable by the participants, the introduction of microneedles may improve vaccination coverage by approximately 20%, and self-administration of vaccines may significantly reduce vaccination costs for a healthcare payer. This was the first study to assess the ability of human subjects to self- administer a microneedle patch and the first study to determine the potential impact of self-vaccination against influenza using a microneedle patch on vaccination coverage and vaccination cost. Overall, the fabrication advances and positive findings from human subjects research support additional translation of microneedles for insulin delivery and self-vaccination toward clinical use.
|
429 |
Characterization of the Francisella pathogenicity Island-encoded type VI secretion system and the development of a vaccine candidateDuplantis, Barry Neil 16 December 2011 (has links)
F. tularensis is a Gram-negative bacterial pathogen and it is the causative agent of tularemia. It has the ability to replicate to high numbers within a variety of host cells, including macrophages. Little is known of its virulence mechanisms; however, all species of Francisella contain a cluster of virulence genes known as the Francisella Pathogenicity Island (FPI), which is thought to encode a type 6 secretion system. While 14 of the 18 FPI genes encode products required for intracellular growth in macrophages, the functions of most of these proteins remain to be determined. Therefore, further work is required to understand the role played by the FPI in Francisella pathogenesis.
In this thesis, the localization of the core FPI proteins IglA, IglB, IglC and IglD, was examined in order to further elucidate of the structure and activities of the FPI-encoded secretion system. Deletion mutagenesis of pdpA was performed to determine how host intracellular signalling might be affected by secretion of the putative FPI effector protein PdpA. In addition, variations in virulence between different biotypes of Francisella were investigated with respect to the role played by the FPI protein PdpD.
Considering the highly infectious nature of Francisella and the absence of a quality vaccine, it is clear that this organism represents an excellent model for proof of principle investigations focussing on new vaccine technologies for intracellular pathogens. The second half of this thesis describes the construction and characterization of live attenuated temperature-sensitive vaccines. These vaccines were created in the intracellular pathogen F. novicida through allelic replacement of essential genes with naturally-occurring, cold-adapted, thermolabile homologues isolated from Arctic bacteria.
Thus, the objectives of this work were twofold: to provide further characterization of the structural components and effector proteins associated with the FPI-encoded secretion system, and to develop a new and effective vaccine technology for use against intracellular bacteria. / Graduate
|
430 |
Measles and polio vaccination using a microneedle patch to increase vaccination coverage in the developing worldEdens, William Christopher 12 January 2015 (has links)
Despite the existence of effective vaccines for both diseases, measles and poliomyelitis still cause significant worldwide morbidity and mortality. The live-attenuated measles and inactivated polio vaccines are both given using a standard needle and syringe injection. This method of delivery poses many problems for large-scale vaccination campaigns. Microneedles are micron-scale needles which have the potential to overcome many of these hurdles.
In the first study, we showed that the measles vaccine could be successfully incorporated into a solid, metal microneedle system which induced potent neutralizing antibody titers after administration into cotton rats. This response was statistically identical to the same dose delivered using a subcutaneous injection.
The second study focused on enhancing the stability of the measles vaccine after drying and long-term storage. Using a new assay developed from a measles virus variant engineered to encode for green fluorescent protein, it was determined that a combination of sucrose and threonine provided the highest stabilizing effect. Vaccine mixed with this solution retained more than 90% of its activity after 6 months of storage at 4°C and 25°C.
The third study involved the incorporation of the measles vaccine into a dissolving microneedle patch. These patches were used to vaccinate rhesus macaques and the immune response was found to be statistically identical to the same dose delivered by syringe injection. Furthermore, after creation and storage, these patches retained 100% of their infectivity after 2 months at 4°C and 25°C.
The final study attempted to create a dissolving microneedle patch containing a full dose of the inactivated polio vaccine. These patches were then used to deliver a full dose of IPV into the skin of a rhesus macaque. This delivery method produced neutralizing antibody titers to IPV type 1 and 2 that were statistically identical to the same dose delivered using a needle and syringe.
Overall, these studies show that the microneedle patch was a safe, simple and effective method for measles and polio vaccination. This delivery platform has the potential to overcome many of the hurdles that currently stand in the way of measles elimination and polio eradication.
|
Page generated in 0.0902 seconds