Spelling suggestions: "subject:"clustering"" "subject:"biclustering""
1 |
VAE-clustering of neural signals and their association to cytokines / VAE-klustring av nervsignaler och dess associationer till cytokinerEskandari, Aram January 2020 (has links)
In this thesis we start by reproducing previous experiments by Zanos et al., where they have shown that it is possible to associate neural signals with specific cytokines. One future aim of this project is to send synthetic neural signals through the efferent arc of the vagus nerve and observe reactions without the corresponding catalyst of the symptoms. We use a variational autoencoder (VAE) in our experiment to create a model able to generate new neural signals, and we introduce a novel clustering technique called VAE-clustering, which will be used to cluster neural signals with their associated cytokines. The focus of this paper is the implementation of this method and applying it on the neural signals. Running VAE-clustering on the MNIST dataset shows it to be viable for finding detailed properties of a dataset. We also find that using a VAE as a generative model for neural signals is a good way for recreating detailed waveforms. / I detta examensarbete börjar vi med att reproducera tidigare experiment av Zanos et al., där dom visat att det är möjligt att associera nervsignaler med specifika cytokiner. Ett framtida mål med detta projekt är att skicka syntetiska nervsignaler till kroppen för att observera reaktioner utan motsvarande katalysator av symptomen. Vi använder en variational autoencoder (VAE) i våra experiment för att skapa en modell kapabel till att generera nya nervsignaler, och vi introducerar en ny klusterings-teknik kallad VAE-klustring, vilken kommer att användas för att klustra nervsignaler med dess associerade cytokiner. Fokuset i detta arbete ligger i implementationen av denna metod och applicerandet på nervsignaler. Efter att ha kört VAE-klustring på MNIST dataset fann vi att det det är användbart för att hitta detaljerade egenskaper hos ett dataset. Vi har även funnit att användningen av en VAE som en generativ modell för nervsignaler är ett bra sätt att återskapa detaljerade vågformer.
|
2 |
Deep Scenario Generation of Financial Markets / Djup scenario generering av finansiella marknaderCarlsson, Filip, Lindgren, Philip January 2020 (has links)
The goal of this thesis is to explore a new clustering algorithm, VAE-Clustering, and examine if it can be applied to find differences in the distribution of stock returns and augment the distribution of a current portfolio of stocks and see how it performs in different market conditions. The VAE-clustering method is as mentioned a newly introduced method and not widely tested, especially not on time series. The first step is therefore to see if and how well the clustering works. We first apply the algorithm to a dataset containing monthly time series of the power demand in Italy. The purpose in this part is to focus on how well the method works technically. When the model works well and generates proper results with the Italian Power Demand data, we move forward and apply the model on stock return data. In the latter application we are unable to find meaningful clusters and therefore unable to move forward towards the goal of the thesis. The results shows that the VAE-clustering method is applicable for time series. The power demand have clear differences from season to season and the model can successfully identify those differences. When it comes to the financial data we hoped that the model would be able to find different market regimes based on time periods. The model is though not able distinguish different time periods from each other. We therefore conclude that the VAE-clustering method is applicable on time series data, but that the structure and setting of the financial data in this thesis makes it to hard to find meaningful clusters. The major finding is that the VAE-clustering method can be applied to time series. We highly encourage further research to find if the method can be successfully used on financial data in different settings than tested in this thesis. / Syftet med den här avhandlingen är att utforska en ny klustringsalgoritm, VAE-Clustering, och undersöka om den kan tillämpas för att hitta skillnader i fördelningen av aktieavkastningar och förändra distributionen av en nuvarande aktieportfölj och se hur den presterar under olika marknadsvillkor. VAE-klusteringsmetoden är som nämnts en nyinförd metod och inte testad i stort, särskilt inte på tidsserier. Det första steget är därför att se om och hur klusteringen fungerar. Vi tillämpar först algoritmen på ett datasätt som innehåller månatliga tidsserier för strömbehovet i Italien. Syftet med denna del är att fokusera på hur väl metoden fungerar tekniskt. När modellen fungerar bra och ger tillfredställande resultat, går vi vidare och tillämpar modellen på aktieavkastningsdata. I den senare applikationen kan vi inte hitta meningsfulla kluster och kan därför inte gå framåt mot målet som var att simulera olika marknader och se hur en nuvarande portfölj presterar under olika marknadsregimer. Resultaten visar att VAE-klustermetoden är väl tillämpbar på tidsserier. Behovet av el har tydliga skillnader från säsong till säsong och modellen kan framgångsrikt identifiera dessa skillnader. När det gäller finansiell data hoppades vi att modellen skulle kunna hitta olika marknadsregimer baserade på tidsperioder. Modellen kan dock inte skilja olika tidsperioder från varandra. Vi drar därför slutsatsen att VAE-klustermetoden är tillämplig på tidsseriedata, men att strukturen på den finansiella data som undersöktes i denna avhandling gör det svårt att hitta meningsfulla kluster. Den viktigaste upptäckten är att VAE-klustermetoden kan tillämpas på tidsserier. Vi uppmuntrar ytterligare forskning för att hitta om metoden framgångsrikt kan användas på finansiell data i andra former än de testade i denna avhandling
|
Page generated in 0.0835 seconds