11 |
Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road TransportationTripathi, Shashwat 06 September 2023 (has links)
[ES] Los estudios realizados en el pasado han demostrado que, a pesar de tener cero emisiones del tubo de escape, un vehículo completamente eléctrico tiene emisiones durante el ciclo de vida. El desarrollo tecnológico a lo largo de los años por parte de la humanidad ha llevado constantemente a un aumento de la dependencia energética. Desafortunadamente, esta energía proviene principalmente de fuentes fósiles. Uno de los principales consumidores de energía de origen fósil es la industria del transporte, que utiliza petróleo y diesel como combustibles. Estos combustibles se queman en motores de combustión interna para producir energía debido a su alto poder calorífico. Dado que estos son combustibles a base de carbono, genera dióxido de carbono durante el proceso, que es un gas de efecto invernadero. Por lo tanto, ha habido un seguimiento y una regulación muy estrictos de los tubos de escape de los automóviles a lo largo de los años. Recientemente, diferentes regiones del mundo han planeado prohibir la venta de vehículos convencionales basados en motores de combustión interna. Por lo tanto, vender solo vehículos con cero emisiones de escape, como vehículos eléctricos de batería y vehículos eléctricos de pila de combustible.
Esto se debe principalmente a la intensidad de las emisiones de la combinación de electricidad, para alimentar las baterías y el proceso de fabricación de baterías para vehículos eléctricos de batería. Mientras que los vehículos eléctricos de pila de combustible dependen de la intensidad de emisión de la producción de hidrógeno. Dado que la producción actual de hidrógeno es muy limitada y tiene un alto contenido de carbono, los vehículos eléctricos de batería son los preferidos para reemplazar a los vehículos con motor de combustión interna. Otra razón detrás del impulso de este cambio es la alta eficiencia de los sistemas de propulsión eléctricos. A pesar de eso, es muy difícil para los vehículos eléctricos de batería igualar el rango de conducción de los vehículos con motor de combustión interna debido a la gran diferencia en la densidad de energía de las baterías y los combustibles líquidos. En condiciones reales de conducción, este rango de conducción es aún más reducido, a pesar de tener grandes paquetes de baterías a bordo. Esta es una limitación importante para el uso de vehículos eléctricos de batería, hasta que se desarrolle una infraestructura de carga extensa.
Por ello, en esta tesis se evalúa el potencial de reducción de emisiones de los vehículos eléctricos con un enfoque de ciclo de vida para turismos y autobuses. Esto se hace comparando sus emisiones con las de los vehículos diésel convencionales y eléctricos híbridos para ciclos de conducción reales utilizando simulaciones numéricas 0D. Esto se complementa con estudios del costo del ciclo de vida de los diferentes vehículos para ver qué opción de tren motriz puede ser más eficiente. Además, los combustibles sintéticos bajos en carbono también se están evaluando como una solución alternativa para reemplazar el combustible diesel y ver el cambio que puede traer al ciclo de vida de los vehículos con motor de combustión interna. Estas evaluaciones se realizan para diferentes ubicaciones a nivel mundial para observar los factores locales que afectan los resultados.
Por lo tanto, este trabajo tiene como objetivo evaluar los resultados del ciclo de vida para los responsables políticos y los fabricantes de automóviles a nivel mundial, tanto de las emisiones como del costo, asociados con cada opción de tren motriz. Como resultado de esta investigación, se observan varios desafíos relacionados con los vehículos eléctricos de batería que deben abordarse antes de su adopción masiva. Por lo tanto, se propone el uso de vehículos híbridos como una solución a corto plazo para abordar la urgencia de reducción de emisiones globales. Lo cual, de hecho, también puede considerarse una solución a largo plazo si funciona con combustibles bajos en carbono. / [CA] Els estudis realitzats en el passat han demostrat que, malgrat tenir zero emissions del tub d'escapament, un vehicle completament elèctric té emissions durant el cicle de vida. El desenvolupament tecnològic al llarg dels anys per part de la humanitat ha portat constantment a un augment de la dependència energètica. Desafortunadament, aquesta energia prové principalment de fonts fòssils. Un dels principals consumidors denergia dorigen fòssil és la indústria del transport, que utilitza petroli i dièsel com a combustibles. Aquests combustibles es cremen en motors de combustió interna per produir energia a causa del seu alt poder calorífic. Atès que són combustibles a base de carboni, genera diòxid de carboni durant el procés, que és un gas d'efecte hivernacle. Per tant, hi ha hagut un seguiment i una regulació molt estrictes dels tubs de fuga dels automòbils al llarg dels anys. Recentment, diverses regions del món han planejat prohibir la venda de vehicles convencionals basats en motors de combustió interna. Per tant, vendre només vehicles amb zero emissions d'escapament, com ara vehicles elèctrics de bateria i vehicles elèctrics de pila de combustible.
Això es deu principalment a la intensitat de les emissions de la combinació delectricitat, per alimentar les bateries i el procés de fabricació de bateries per a vehicles elèctrics de bateria. Mentres que els vehicles elèctrics de pila de combustible depenen de la intensitat d'emissió de la producció d'hidrogen. Atès que la producció actual dhidrogen és molt limitada i té un alt contingut de carboni, els vehicles elèctrics de bateria són els preferits per reemplaçar els vehicles amb motor de combustió interna. Una altra raó darrere de l¿impuls d¿aquest canvi és l¿alta eficiència dels sistemes de propulsió elèctrics. Tot i això, és molt difícil per als vehicles elèctrics de bateria igualar el rang de conducció dels vehicles amb motor de combustió interna a causa de la gran diferència en la densitat denergia de les bateries i els combustibles líquids. En condicions reals de conducció, aquest rang de conducció encara és més reduït, tot i tenir grans paquets de bateries a bord. Aquesta és una limitació important per a lús de vehicles elèctrics de bateria, fins que es desenvolupi una infraestructura de càrrega extensa.
Per això, en aquesta tesi s"avalua el potencial de reducció d"emissions dels vehicles elèctrics amb un enfocament de cicle de vida per a turismes i autobusos. Això es fa comparant les seves emissions amb les dels vehicles dièsel convencionals i elèctrics híbrids per a cicles de conducció reals utilitzant simulacions numèriques 0D. Això es complementa amb estudis del cost del cicle de vida dels diferents vehicles per veure quina opció de tren motriu pot ser més eficient. A més, els combustibles sintètics baixos en carboni també s'estan avaluant com a solució alternativa per reemplaçar el combustible dièsel i veure el canvi que pot portar al cicle de vida dels vehicles amb motor de combustió interna. Aquestes avaluacions es fan per a diferents ubicacions a nivell mundial per observar els factors locals que afecten els resultats.
Per tant, aquest treball té per objectiu avaluar els resultats del cicle de vida per als responsables polítics i els fabricants d'automòbils a nivell mundial, tant de les emissions com del cost, associats amb cada opció de tren motriu. Com a resultat d'aquesta investigació, s'observen diversos desafiaments relacionats amb els vehicles elèctrics de bateria que cal abordar abans de la seva adopció massiva. Per tant, es proposa utilitzar vehicles híbrids com una solució a curt termini per abordar la urgència de reducció d'emissions globals. Això, de fet, també es pot considerar una solució a llarg termini si funciona amb combustibles baixos en carboni. / [EN] Several studies in the past have shown that despite having zero tailpipe emissions in a fully electric vehicle, it does have emissions when evaluated on a life cycle basis. Technology development over the years by humankind has constantly led to an increase in energy dependence. Unfortunately, this energy comes mainly from fossil-based sources that are limited. One major consumer of fossil-based energy sources is the transportation industry, which uses fossil-based petrol and diesel as fuels. These fuels are burned in internal combustion engines to produce energy due to their high calorific value. Since these are carbon-based fuels, it generates carbon dioxide during the combustion process, which is a greenhouse gas and leads to global warming. Therefore, there has been very strict monitoring and regulation of its emissions from the automotive tailpipes over the years. In recent years, different regions across the world have planned to completely stop the sale of conventional internal combustion engine-based vehicles. Thus, selling only zero tailpipe emission vehicles such as battery electric vehicles and fuel cell electric vehicles.
This is primarily due to the emission intensity of the electricity mix used to power the batteries and from the battery manufacturing process for battery electric vehicles. At the same time, the fuel cell vehicle depends mainly on the emission intensity of hydrogen production. Since current hydrogen production is very limited and carbon-intensive, battery electric vehicles are highly favoured to replace internal combustion engine vehicles soon. Another reason behind the push for this shift is the high efficiency of electric powertrains. Despite that, it is very challenging for battery electric vehicles to match the driving range of internal combustion engine vehicles due to the large difference in the energy density of batteries and liquid fuels, currently. Further, in real driving conditions, this driving range is even more reduced for electric vehicles, even after having large battery packs on board. This is a major limitation for battery electric vehicles, especially for the ones meant for long haul routes, until an extensive charging infrastructure is developed.
Therefore, in this thesis, the emission reduction potential of electric vehicles is evaluated following a life cycle approach for passenger cars and city buses. This is done by comparing their emissions with that of conventional diesel and hybrid electric vehicles for real driving cycles by means of 0D numerical simulations. This is complemented with life cycle cost studies for the different vehicles to see which powertrain option can be efficient in terms of emissions but also cost. Moreover, low-carbon synthetic fuels are also evaluated as an alternative drop-in solution to replace diesel fuel and see the change it can bring on a life cycle basis for hybrid and conventional internal combustion engine vehicles. These evaluations are done for different locations globally to observe the local factors that affect the results of each powertrain option for the two vehicle segments.
Thus, this work is intended to evaluate the life cycle results for the policymakers and automobile manufacturers globally, for the emissions as well as the cost associated with each powertrain option. As an outcome of this research, several challenges are observed related to emissions and cost of the battery electric vehicles that need to be addressed before their mass adoption. Hence, the use of hybrid vehicles as a short-term solution to address the global emission reduction urgency is proposed for the road transportation sector. Which, in fact, may also be considered a long-term solution if powered with low-carbon fuels. / Tripathi, S. (2023). Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road Transportation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196725
|
Page generated in 0.0279 seconds