1 |
Formation and stability of hybrid perovskitesShargaieva, Oleksandra 07 November 2018 (has links)
Solarzellen auf Basis von hybriden Perowskiten, wie zum Beispiel Methylammoniumbleitriiodid (CH3NH3PbI3), stellen eine der vielversprechendsten Solarzellenkonzepte dar. Dabei wurden Wirkungsgrade über 20 % gezeigt. Perowskite werden durch verschiedene lösungsbasierte Techniken abgeschieden. Daher konzentriert sich der erste Teil dieser Dissertation auf die Bildung von hybriden Perowskiten in der Lösung, während der zweite Teil der Stabilität von hybriden Perowskiten gewidmet ist. Im ersten Teil, wird die Bildung von Polyiodidplumbaten aus PbI2 in Lösung nachgewiesen. Die Bildung dieser Polyiodidplumbate konnte unabhängig von dem gewählten Lösungsmittel sowie unabhängig von der Beigabe von Methylammoniumiodid (CH3NH3I) beobachtet werden. Die Polyiodidplumbate zeigten, ähnlich wie CH3NH3PbI3, ein Photolumineszenzmaximum bei einer Wellenlänge von 760 nm, was auf einen gemeinsamen Ursprung des angeregten Zustands in PbI2-Komplexen und CH3NH3PbI3 hindeutet. Im zweiten Teil wurden darüber hinaus die Lichtbeständigkeit sowie die thermische und kompositionelle Stabilität untersucht. Die Untersuchung der thermischen Stabilität hat gezeigt, dass Tempern bei T <190 °C zu einer Verbesserung der Morphologie und der optoelektronischen Eigenschaften führt. Oberhalb einer Temperatur von 190 °C kam es dabei zur Zersetzung des Materials. Die Stabilität der Komposition wurde anhand von CsPb(I[1-x]Br[x])3-Perowskiten untersucht. Die Herstellung von Perowskiten mit einer großen Bandlücke war zunächst nicht möglich, da es bei den dafür notwendigen Kompositionen (0,3<x<1) zur Phasentrennung kommt. Im Gegensatz dazu konnte durch den Zusatz von Ethylendiammoniumdiodid (EDDI) zu CH3NH3PbI3 die Bandlücke zwischen 1,6 und 1,8 eV variiert werden. Die Lichtstabilität von CH3NH3PbI3, CH(NH2)2PbI3 sowie gemischt Perowskiten wurde mittels in-situ Infrarotspektroskopie analysiert. Die Zersetzung des Materials war durch die lichtinduzierte Spaltung der N-H-Bindungen bei hv ≥ 2,72 eV gekennzeichnet. / Hybrid perovskites such as methylammonium lead iodide, CH3NH3PbI3, are one of the most promising absorber materials for photovoltaic energy conversion with demonstrated power conversion efficiencies beyond 20 %. In addition, hybrid perovskites can be deposited by various solution-based fabrication techniques. Therefore, the first part of this dissertation is focused on the formation of hybrid perovskites in the precursor solution, while the second part is dedicated to the study of the stability of hybrid perovskites. In the first part of this thesis, the formation of polyiodide plumbates between molecules of PbI2 was detected. Importantly, the formation of polyiodide plumbates was observed independently of the solvent choice or the presence of CH3NH3I. The polyiodide plumbates exhibited a photoluminescence peak located at 760 nm, similarly to CH3NH3PbI3, which suggests a common origin of the excited state in PbI2 complexes and CH3NH3PbI3. In the second part of this thesis, the thermal, compositional, and photostability of perovskite thin films were evaluated. The study of the thermal stability has shown that post-annealing at T < 190 °C leads to the improvement of morphology and optoelectronic properties. Above 190 °C, CH3NH3PbI3 was found to degrade. Next, the compositional stability of mixed CsPb(I[1-x]Br[x])3 perovskites was investigated. A fundamental miscibility gap between 0.3 < x <1 was demonstrated, that impedes the preparation of high band-gap perovskites. To overcome this intrinsic instability, a new approach for band-gap engineering was developed. An addition of ethylenediammonium diiodide (EDDI) allowed to alter the band gap of CH3NH3PbI3 from 1.6 to 1.8 eV. Finally, the influence of light on the stability of hybrid perovskites was studied. A degradation of CH3NH3PbI3, CH(NH2)2PbI3, as well as mixed perovskites, was observed through photo-dissociation of N-H bonds with hν ≥ 2.72 eV by means of in-situ Fourier-transform infrared spectroscopy.
|
2 |
In situ Untersuchungen der mechanochemischen Synthese von Cokristallen: Einfluss von Reaktionsparametern am Modellsystem PyrazinamidKulla, Hannes 25 July 2019 (has links)
Die Mechanochemie findet zunehmend Verwendung für die Synthese neuer Verbindungen. Dennoch sind die beim Mahlen stattfindenden Prozesse weitestgehend unverstanden. Dahingehend wurde in dieser Arbeit eine Dreifachkopplung aus in situ Synchrotron-Röntgenbeugung, Raman-Spektroskopie und Thermographie entwickelt, um mechanochemische Reaktionen unter realistischen Bedingungen in Echtzeit zu verfolgen. Dadurch konnten tiefgreifende Einblicke in den Reaktionsverlauf und Temperaturverlauf beim Mahlen erhalten und neue metastabile Verbindungen isoliert werden. Für die Bildung pharmazeutischer Cokristalle diente Pyrazinamid als Modellsystem. Es konnten neue binäre und ternäre Verbindungen synthetisiert, detailliert charakterisiert und deren Kristallstruktur aufgeklärt werden. Die Abhängigkeit der Stabilität polymorpher Cokristalle von der Temperatur und den Synthesebedingungen konnte gezeigt werden. In Konkurrenzreaktionen konnten Trends hinsichtlich der bevorzugten Bildung eine bestimmten Cokristalls beobachtet werden. Mittels in situ Untersuchungen wurde der Einfluss zentraler Reaktionsparameter, wie die Mahlfrequenz, der Kugeldurchmesser, der eingesetzte Ausgangsstoff und die Zugabe von Lösungsmittel, auf die Induktions- und Reaktionszeit der Reaktion ermittelt. Basierend auf den gewonnenen Erkenntnissen konnte ein Diffusionsmechanismus für die mechanochemische Cokristallbildung abgeleitet werden. / Mechanochemistry is increasingly applied for the synthesis of new compounds. Still, the processes taking place during milling are far from being understood. In this thesis, a triple coupling of in situ synchrotron X-ray diffraction, Raman spectroscopy and thermography has been developed to follow mechanochemical reactions under realistic conditions in real time. This allowed deep insights into the reaction and temperature progression during milling and the isolation of new metastable compounds. For the formation of pharmaceutical cocrystals pyrazinamide served as a model system. New binary and ternary compounds were synthesized, characterized in detail and their crystal structure solved. The dependence of the stability of polymorphic cocrystals on temperature and synthesis conditions could be shown. In competitive reactions, trends regarding the preferred formation of a certain cocrystal have been observed. The influence of important reaction parameters, such as the milling frequency, the ball diameter, the starting material used and the addition of solvent, on the induction and reaction time of the reaction was determined by means of in situ investigations. Based on the gained knowledge, a diffusion mechanism for the mechanochemical cocrystal formation could be derived.
|
Page generated in 0.0213 seconds