• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1526
  • 603
  • 211
  • 163
  • 161
  • 70
  • 56
  • 30
  • 27
  • 24
  • 24
  • 20
  • 16
  • 14
  • 13
  • Tagged with
  • 3452
  • 1036
  • 726
  • 464
  • 434
  • 401
  • 385
  • 315
  • 309
  • 307
  • 252
  • 248
  • 221
  • 209
  • 187
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Limit theorems, regularity and moments for affine-normalized sums of independent, identically distributed random vectors

Weiner, Daniel Charles. January 1984 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1984. / Typescript. Vita. Description based on print version record. Includes bibliographical references.
12

Criteria for positive and ample vector bundles

Frankel, Robert Samuel, January 1976 (has links)
Thesis--Wisconsin. / Vita. Includes bibliographical references (leaf 42).
13

The application of vectors in velocity and acceleration analyses of mechanisms

Synn, Kyung Chan. January 1961 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1961. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 99).
14

Contribution to the theory of stably trivial vector bundles

Allard, Jacques January 1977 (has links)
A vector bundle E over a CW-complex X is said to be stably trivial of type (n,k) if E, © ke = ne, where e denotes the trivial line bundle. Let V[sub n,k] , be the Stiefel manifold of orthonormal k- frame in euclidian n-space R[sup n] and let n[sub n,k] , be the real (n-k)- dimensional vector bundle over V[sub n,l] , whose fiber over a k—frame x is the subspace of R[sup n] orthogonal to the span of the vectors in x . The vector bundle n[sub n,k], is "weakly universal" for stably trivial vector bundles of type (n,k), i.e. for any stably trivial vector bundle of type (n,k), there is a map f: X -> V[sub n,k] , not necessarily unique up to homotopy, such that f *n[sub n,k] = E, . We study the following questions: (a) for which values of r is the r-fold Whitney sum rn[sub n,k] , trivial, and (b) what is the maximum number of linearly independent cross-sections of n[sub n,k] ©[sup se] (0 < s < k - 1) . Among the results obtained are: (1) 2n[sub n,2] is trivial iff n is even or n=3; (2) 3n[sub n,2] is trivial if n is even; (3) rn[sub n,k], is not trivial if r is odd and < (n-2)/(n-k): (4) n[sub n,k] © (k-l)c is not trivial if n ≄ 2,4,8 and 1 < k < n - 3; (5) n[sub n,k] © [sup se] admits exactly s linearly independent cross-sections if n and k are odd; (6) n[sub n,k] © (k-2)e admits at most (k-1) linearly independent sections if 2<_k<_n-3. These results are used to construct examples of stably free modules and unimodular matrices over commutative noetherian rings. The techniques used are those of homotopy theory, including Postnikov systems, K-theory and, specially, Spin operations on vector bundles. A chapter of the thesis is devoted to defining the Spin operations formally as a type of K-theoretic characteristic classes for a certain type of real vector bundles. Formulae to compute the Spin operations on a Whitney sum of vector bundles are given. / Science, Faculty of / Mathematics, Department of / Graduate
15

Analyse automatique de données par Support Vector Machines non supervisés

D'Orangeville, Vincent January 2012 (has links)
Cette dissertation présente un ensemble d'algorithmes visant à en permettre un usage rapide, robuste et automatique des « Support Vector Machines » (SVM) non supervisés dans un contexte d'analyse de données. Les SVM non supervisés se déclinent sous deux types algorithmes prometteurs, le « Support Vector Clustering » (SVC) et le « Support Vector Domain Description » (SVDD), offrant respectivement une solution à deux problèmes importants en analyse de données, soit la recherche de groupements homogènes (« clustering »), ainsi que la reconnaissance d'éléments atypiques (« novelty/abnomaly detection ») à partir d'un ensemble de données. Cette recherche propose des solutions concrètes à trois limitations fondamentales inhérentes à ces deux algorithmes, notamment I) l'absence d'algorithme d'optimisation efficace permettant d'exécuter la phase d'entrainement des SVDD et SVC sur des ensembles de données volumineux dans un délai acceptable, 2) le manque d'efficacité et de robustesse des algorithmes existants de partitionnement des données pour SVC, ainsi que 3) l'absence de stratégies de sélection automatique des hyperparamètres pour SVDD et SVC contrôlant la complexité et la tolérance au bruit des modèles générés. La résolution individuelle des trois limitations mentionnées précédemment constitue les trois axes principaux de cette thèse doctorale, chacun faisant l'objet d'un article scientifique proposant des stratégies et algorithmes permettant un usage rapide, robuste et exempt de paramètres d'entrée des SVDD et SVC sur des ensembles de données arbitraires.
16

Vector cross product structures on manifolds

Abdelghaffar, Kamal Hassan January 1973 (has links)
No description available.
17

A Presentation of Current Research on Partitions of Lines and Space

Nugen, Frederick T. 12 1900 (has links)
We present the results from three papers concerning partitions of vector spaces V over the set R of reals and of the set of lines in V.
18

Vector fields and Thurston's theory of earthquakes

Green, P. January 1987 (has links)
No description available.
19

Kernel methods and their application to systems idenitification and signal processing

Drezet, Pierre M. L. January 2001 (has links)
No description available.
20

Characterization of the microbial community within the digestive tracts of Simuliidae

Taylor, Mark Richard January 1992 (has links)
No description available.

Page generated in 0.0172 seconds