1 |
A study of deep learning-based face recognition models for sibling identificationGoel, R., Mehmood, Irfan, Ugail, Hassan 20 March 2022 (has links)
Yes / Accurate identification of siblings through face recognition is a challenging task. This is predominantly because of the high degree of similarities among the faces of siblings. In this study, we investigate the use of state-of-the-art deep learning face recognition models to evaluate their capacity for discrimination between sibling faces using various similarity indices. The specific models examined for this purpose are FaceNet, VGGFace, VGG16, and VGG19. For each pair of images provided, the embeddings have been calculated using the chosen deep learning model. Five standard similarity measures, namely, cosine similarity, Euclidean distance, structured similarity, Manhattan distance, and Minkowski distance, are used to classify images looking for their identity on the threshold defined for each of the similarity measures. The accuracy, precision, and misclassification rate of each model are calculated using standard confusion matrices. Four different experimental datasets for full-frontal-face, eyes, nose, and forehead of sibling pairs are constructed using publicly available HQf subset of the SiblingDB database. The experimental results show that the accuracy of the chosen deep learning models to distinguish siblings based on the full-frontal-face and cropped face areas vary based on the face area compared. It is observed that VGGFace is best while comparing the full-frontal-face and eyes—the accuracy of classification being with more than 95% in this case. However, its accuracy degrades significantly when the noses are compared, while FaceNet provides the best result for classification based on the nose. Similarly, VGG16 and VGG19 are not the best models for classification using the eyes, but these models provide favorable results when foreheads are compared.
|
2 |
Deep Learning-Based Approach for Fusing Satellite Imagery and Historical Data for Advanced Traffic Accident SeveritySandaka, Gowtham Kumar, Madhamsetty, Praveen Kumar January 2023 (has links)
Background. This research centers on tackling the serious global problem of trafficaccidents. With more than a million deaths each year and numerous injuries, it’svital to predict and prevent these accidents. By combining satellite images and dataon accidents, this study uses a mix of advanced learning methods to build a modelthat can foresee accidents. This model aims to improve how accurately we predictaccidents and understand what causes them. Ultimately, this could lead to betterroad safety, smoother maintenance, and even benefits for self-driving cars and insurance. Objective.The objective of this thesis is to create a predictive model that improvesthe accuracy of traffic accident severity forecasts by integrating satellite imagery andhistorical accident data and comparing this model with stand-alone data models.Through this hybrid approach, the aim is to enhance prediction precision and gaindeeper insights into the underlying factors contributing to accidents, thereby potentially aiding in the reduction of accidents and their resulting impact. Method.The proposed method involves doing a literature review to find currentimage recognition models and then experimentation by training a Logistic Regression, Random Forest, SVM classifier, VGG19, and the hybrid model using the CNNand VGG19 and then comparing their performance using metrics mentioned in thethesis work. Results.The performance of the proposed method is evaluated using various metrics, including precision, recall, F1 score, and confusion matrix, on a large datasetof labeled images. The results indicate that a high accuracy of 81.7% is achieved indetecting traffic accident severity through our proposed approach where the modelbuilt on individual structural data and image data got an accuracy of 58.4% and72.5%. The potential utilization of our proposed method can detect safe and dangerous locations for accidents. Conclusion.The predictive modeling of Traffic accidents are performed using thethree different types of datasets which are structural data, satellite images, and acombination of both. The finalized architectures are an SVM classifier, VGG19, anda hybrid input model using CNN and VGG19. These models are compared in orderto find the best-performing approach. The results indicate that our hybrid modelhas the best accuracy with 81.7% indicating a strong performance by the model.
|
Page generated in 0.0251 seconds