1 |
A study of deep learning-based face recognition models for sibling identificationGoel, R., Mehmood, Irfan, Ugail, Hassan 20 March 2022 (has links)
Yes / Accurate identification of siblings through face recognition is a challenging task. This is predominantly because of the high degree of similarities among the faces of siblings. In this study, we investigate the use of state-of-the-art deep learning face recognition models to evaluate their capacity for discrimination between sibling faces using various similarity indices. The specific models examined for this purpose are FaceNet, VGGFace, VGG16, and VGG19. For each pair of images provided, the embeddings have been calculated using the chosen deep learning model. Five standard similarity measures, namely, cosine similarity, Euclidean distance, structured similarity, Manhattan distance, and Minkowski distance, are used to classify images looking for their identity on the threshold defined for each of the similarity measures. The accuracy, precision, and misclassification rate of each model are calculated using standard confusion matrices. Four different experimental datasets for full-frontal-face, eyes, nose, and forehead of sibling pairs are constructed using publicly available HQf subset of the SiblingDB database. The experimental results show that the accuracy of the chosen deep learning models to distinguish siblings based on the full-frontal-face and cropped face areas vary based on the face area compared. It is observed that VGGFace is best while comparing the full-frontal-face and eyes—the accuracy of classification being with more than 95% in this case. However, its accuracy degrades significantly when the noses are compared, while FaceNet provides the best result for classification based on the nose. Similarly, VGG16 and VGG19 are not the best models for classification using the eyes, but these models provide favorable results when foreheads are compared.
|
2 |
Deep Learning-Based Approach for Fusing Satellite Imagery and Historical Data for Advanced Traffic Accident SeveritySandaka, Gowtham Kumar, Madhamsetty, Praveen Kumar January 2023 (has links)
Background. This research centers on tackling the serious global problem of trafficaccidents. With more than a million deaths each year and numerous injuries, it’svital to predict and prevent these accidents. By combining satellite images and dataon accidents, this study uses a mix of advanced learning methods to build a modelthat can foresee accidents. This model aims to improve how accurately we predictaccidents and understand what causes them. Ultimately, this could lead to betterroad safety, smoother maintenance, and even benefits for self-driving cars and insurance. Objective.The objective of this thesis is to create a predictive model that improvesthe accuracy of traffic accident severity forecasts by integrating satellite imagery andhistorical accident data and comparing this model with stand-alone data models.Through this hybrid approach, the aim is to enhance prediction precision and gaindeeper insights into the underlying factors contributing to accidents, thereby potentially aiding in the reduction of accidents and their resulting impact. Method.The proposed method involves doing a literature review to find currentimage recognition models and then experimentation by training a Logistic Regression, Random Forest, SVM classifier, VGG19, and the hybrid model using the CNNand VGG19 and then comparing their performance using metrics mentioned in thethesis work. Results.The performance of the proposed method is evaluated using various metrics, including precision, recall, F1 score, and confusion matrix, on a large datasetof labeled images. The results indicate that a high accuracy of 81.7% is achieved indetecting traffic accident severity through our proposed approach where the modelbuilt on individual structural data and image data got an accuracy of 58.4% and72.5%. The potential utilization of our proposed method can detect safe and dangerous locations for accidents. Conclusion.The predictive modeling of Traffic accidents are performed using thethree different types of datasets which are structural data, satellite images, and acombination of both. The finalized architectures are an SVM classifier, VGG19, anda hybrid input model using CNN and VGG19. These models are compared in orderto find the best-performing approach. The results indicate that our hybrid modelhas the best accuracy with 81.7% indicating a strong performance by the model.
|
3 |
Deploying Deep Learning for Facemask Detection in Mobile Healthcare Units : master's thesis / Внедрение глубокого обучения для распознавания лицевых масок в мобильных медицинских учрежденияхХаяви, В. М. Х., Hayawi, W. M. H. January 2024 (has links)
Identifying facemasks is an important duty that affects public health and safety, especially during epidemics of communicable diseases. Many architectures of deep learning models are being investigated for their effectiveness, as they have demonstrated great potential in automating this process. The performance of four well-known deep learning architectures—VGG19, VGG16, GRU, and Fully Convolutional Neural Networks (FCNN)—for facemask identification is thoroughly compared in this thesis. The goal of the study is to assess these architectures in terms of accuracy, efficiency, and robustness in order to offer important information for the creation of efficient facemask detection systems. This study examines the advantages and disadvantages of each model in relation to facemask detection through thorough testing and analysis. The models are statistically evaluated for their ability to detect facemasks in pictures or video streams using performance metrics including precision, recall, and F1-score. Furthermore, the actual feasibility of using these models in real-world applications is assessed by analyzing computational efficiency measures like inference time and model size. Moreover, the models' resilience is assessed in a range of demanding scenarios, such as changes in illumination, facial expressions, and occlusions. The consequences of these results are discussed in the thesis along with suggestions for improving each architecture for facemask detection tasks. This study's methodology focuses on developing and evaluating deep learning models for facemask recognition that are especially suited for usage in mobile health care units. This method seeks to guarantee high accuracy, robustness, and efficiency in real-world healthcare environments, where prompt and accurate facemask detection is essential. Four well-known deep learning architectures VGG19, VGG16, Gated Recurrent Unit (GRU), and Fully Convolutional Neural Networks (FCNN) were chosen for the models' selection and development. Due to their shown effectiveness in a range of image recognition tasks and possible flexibility to facemask detection, these models were selected. / Идентификация лицевых масок является важной задачей, которая влияет на здоровье и безопасность населения, особенно во время эпидемий инфекционных заболеваний. Многие архитектуры моделей глубокого обучения исследуются на предмет их эффективности, поскольку они продемонстрировали большой потенциал в автоматизации этого процесса. В этой работе проводится тщательное сравнение производительности четырех хорошо известных архитектур глубокого обучения —VGG19, VGG16, GRU и полностью сверточных нейронных сетей (FCNN)— для идентификации лицевых масок. Цель исследования - оценить эти архитектуры с точки зрения точности, эффективности и надежности, чтобы предоставить важную информацию для создания эффективных систем обнаружения лицевых масок. В этом исследовании рассматриваются преимущества и недостатки каждой модели в отношении распознавания лицевых масок путем тщательного тестирования и анализа. Модели подвергаются статистической оценке на предмет их способности обнаруживать лицевые маски на изображениях или в видеопотоках с использованием показателей производительности, включая точность, запоминаемость и показатель F1. Кроме того, фактическая возможность использования этих моделей в реальных приложениях оценивается путем анализа показателей вычислительной эффективности, таких как время вывода и размер модели. Более того, устойчивость моделей оценивается в ряде сложных сценариев, таких как изменение освещения, выражения лица и прикуса. В диссертации обсуждаются последствия этих результатов, а также предложения по улучшению каждой архитектуры для задач обнаружения лицевых масок. Методология этого исследования направлена на разработку и оценку моделей глубокого обучения для распознавания лицевых масок, которые особенно подходят для использования в мобильных медицинских учреждениях. Этот метод призван гарантировать высокую точность, надежность и эффективность в реальных условиях здравоохранения, где важно быстрое и точное распознавание лицевых масок. Для выбора и разработки моделей были выбраны четыре хорошо известные архитектуры глубокого обучения VGG19, VGG16, Gated Recurrent Unit (GRU) и полностью сверточные нейронные сети (FCNN). Эти модели были выбраны из-за их доказанной эффективности в решении целого ряда задач распознавания изображений и возможной гибкости в обнаружении лицевых масок. Ключевые слова: Распознавание лицевых масок, глубокое обучение, VGG19, VGG16, GRU, Полностью сверточные нейронные сети, Оценка эффективности, Мобильные медицинские учреждения.
|
Page generated in 0.0151 seconds