• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hlavní strukturní protein myšího polyomaviru: interakce s buněčnými strukturami / Major capsid protein of mouse polyomavirus: interaction with cellular structures

Horníková, Lenka January 2012 (has links)
Mouse polyomavirus (MPyV) is small non-enveloped DNA virus. Although this virus has been studied for almost 60 years, it still remains unclear, how can virus transport its genetic information to the cell nucleus. Also, the mechanism of virion morphogenesis is not well understood. First part of this work is focused on endocytic pathway which is used by MPyV for trafficking toward the cell nucleus. Using dominant negative mutant of caveolin-1 we showed that caveolin-1dependent endocytic pathway, described for SV40, is not used by MPyV for productive infection. MPyV is transported to early endosomes. Acidic milieu of endosomes is indispensable for productive infection. Preventing virus localisation into early endosomes (dominant negative mutant of Rab 5 GTPase) or endosomes alkalisation (by ammonium chloride or bafilomycin A1) led to dramatic decrease of virus infectivity. Alkalisation of endosomes entailed retention of MPyV in early endosomes. It indicates that virus is further transported to late endosomes. Finally, we confirmed by FRET that MPyV is in perinuclear space localized into recycling endosomes. Another poor characterized process is virion morphogenesis. To characterize the participation of cellular proteins in virion precursor complexes, nuclear as well as whole-cell lysates of infected cells or...
2

Expressão e caracterização das proteínas VP1 e VP2 de parvovírus humano B19 em Pichia pastoris. / Expression and characterization of VP1 and VP2 proteins of the human parvovirus B19 in Pichia pastoris.

Silva Filho, Claudionor Gomes da 10 December 2007 (has links)
O parvovírus B19 é o agente causador de eritemas infecciosos em crianças, hidropsia fetal em mulheres gestantes, esse vírus pode causar anemia crônica e crise aplástica transitória respectivamente. A levedura P. pastoris é um sistema de expressão usado na produção de várias proteínas heterólogas. O objetivo deste trabalho foi expressar as proteínas VP1 e VP2 do parvovírus humano B19 em levedura P. pastoris. As seqüências gênicas VP1 e VP2 foram amplificadas por PCR, usando DNA do vírus B19, os produtos obtidos foram inicialmente subclonados no vetor pGEM-TEasy. Os fragmentos de DNA foram digeridos com enzima de restrição EcoRI e NotI , purificados e inseridos no vetor de expressão e excreção pPIC9K de P. pastoris, entre os sítios EcoRI e NotI. Para expressão das proteínas recombinantes VP1 e VP2 de parvovírus humano B19, os transformantes foram crescidos em glicerol e induzidos pela adição de metanol. As expressões dos antígenos recombinantes foram analisadas por SDS-PAGE e atividade biológica foram confirmadas pelos ensaios imunológicos ELISA, Dot-Blot e Western Blot. / Human Parvovirus B19 is the causative agent of erythema infectiosum in children, hydrops fetalis in pregnant women, B19 may cause chronic anemia and aplastic crisis, respectively. The yeast P. pastoris expression system is being used for the production of various recombinant heterologous proteins. The objective of this work was to express the VP1 and VP2 proteins of the human parvovirus B19 in the yeast Pichia pastoris. The coding sequence of VP1 and VP2 were amplified by PCR, using DNA virus of B19. PCR-products were initially subcloned in the vector pGEM-TEasy. The DNA fragment EcoRI and NotI was excised, purified, and inserted between the sites EcoRI and NotI of P. pastoris expression-secretion vector pPIC9K.For heterologous expression of the proteins VP1 and VP2 Human parvovirus B19, the transformants were growth on glycerol and induced by the addition of methanol. The expressed recombinant antigens VP1 and VP2 were analyzed by SDS-PAGE and its biological activity were confirmed through Enzyme immunoassay EIA, Dot-Blot e Western Blot.
3

Studium interakcí hlavního strukturního proteinu polyomavirů se strukturami hostitelských buněk / Major structural protein of Polyomaviruses: Interactions with host cell structures

Mrkáček, Michal January 2018 (has links)
The main structural protein VP1 is the product of late polyomaviral genes and it is the largest and the most abundant protein of the whole polyomaviral capsid. Because of the low coding capacity of the polyomaviral genomes, it is considered that in addition to its structural role the VP1 protein might have some additional functions in the late phase of the infectious cycle. This diploma thesis is exactly on these additional functions. In the case of the VP1 protein of mouse polyomavirus, it was observed that the protein is capable of binding to the structure of cellular microtubules. The first objective of this work was to test whether pentamers of the VP1 protein are able of this binding without the participation of other cellular (or viral) proteins. Based on an in vitro experiment, we showed that protein VP1 binds to the structure of microtubules very inefficiently. The second objective of this work was to prepare a detection system that would allow an identification of potential interaction partners of BK polyomavirus VP1 protein. Therefore, expression plasmids producing the N and C-terminally tagged VP1 protein were prepared. These tagged proteins had the property of being biotinylated whilst being produced in the transfected cells. By using affinity chromatography, the entire protein complexes...
4

Studium vlastností genových produktů Polyomaviru karcinomu Merkelových buněk : Příprava protilátek a konstrukce expresních vektorů. / Studies of properties of gene products of the Merkel cell carcinoma polyomavirus: Antibody preparation and expression vector construction.

Sauerová, Pavla January 2013 (has links)
Merkel cell polyomavirus (MCPyV) is a recently discovered human virus, having it's genome often integrated in a genome of Merkel carcinoma cells. Although this type of carcinoma is not so usual, it is very aggressive and it's incidence has been rising in last few years. It is not surprising that this virus is nowadays in the centre of scientific interest, as well as other pathogens and mechanisms affecting human life. Because the virus was discovered not so long ago, its research has been at the whole beginning. This diploma thesisaims to contribute to the study of this virus from the molecular-virology point of view. A neutralizing monoclonal antibody, type IgG2a, targeted against the main capsid protein of MCPyV, VP1, and recognizing its conformational epitote was prepared. This antibody was then used for a pilot study of VP1 VLPs MCPyV movement in mammalian cells. Results showed that the studied virus, at least particularly, utilizes caveolin-1-carrying vesicles for its movement in cells (colocalisation of VP1 VLPs and caveolin-1 was observedColocalisation with EEA1 marker of early endosomes, LamP2 marker of endolysosomal compartments or with BiP marker of endoplasmic reticulum was sporadic but significant. These preliminary results suggest that MCPyV might utilise an endocytic pathway leading...

Page generated in 0.0549 seconds