• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Human papillomavirus type distribution in cervical cancer in Indiana and Botswana

Qadadri, Brahim January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this study we compared the distribution of HPV types in cervical cancer specimens from women living in either Indiana or Botswana. Paraffin-embedded blocks of formalin-fixed cervical cancer specimens were identified from women living in Indiana (n=51) or Botswana (n=171)
12

Elucidating the role of BCL6 in helper T cell activation, proliferation, and differentiation

Hollister, Kristin N. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The transcriptional repressor BCL6 has been shown to be essential for the differentiation of germinal center (GC) B cells and follicular T helper (TFH) cells. The interaction of TFH and GC B cells is necessary for the development of high affinity antibodies specific for an invading pathogen. Germline BCL6-deficient mouse models limit our ability to study BCL6 function in T cells due to the strong inflammatory responses seen in these mice. To overcome this, our lab has developed a new BCL6 conditional knockout (cKO) mouse using the cre/lox system, wherein the zinc finger region of the BCL6 gene is flanked by loxP sites. Mating to a CD4-Cre mouse allowed us to study the effects of BCL6 loss specifically in T cells, without the confounding effects seen in germline knockout models. Using this cKO model, we have reaffirmed the necessity of BCL6 for TFH differentiation, including its role in sustained CXCR5 surface expression, a signature marker for TFH cells. This model also allowed us to recognize the role of BCL6 in promoting the expression of PD-1, another key surface marker for TFH cells. Without BCL6, CD4+ T cells cannot express PD-1 at the high levels seen on TFH cells. Our discovery of DNMT3b as a target for BCL6 suggests BCL6-deficient T cells have increased DNA methyltransferase activity at the PD-1 promoter. This data establishes a novel pathway for explaining how BCL6, a transcriptional repressor, can activate genes. Experiments with the BCL6 cKO model have also established a role for BCL6 in naïve CD4+ T cell activation. Furthermore, we did not observe increased differentiation of other helper T cell subsets, in contrast to what has been reported elsewhere with germline BCL6-deficient models. Unexpectedly, we found decreased T helper type 2 (Th2) cells, whereas mouse models with a germline mutation of BCL6 have increased Th2 cells. These results indicate that BCL6 activity in non-T cells is critical for controlling T cell differentiation. Finally, using an HIV-1 gp120 immunization model, we have, for the first time, shown BCL6-dependent GCs to be limiting for antibody development and affinity maturation in a prime-boost vaccine scheme.
13

Vaccinia Virus Binding and Infection of Primary Human Leukocytes

Byrd, Daniel James January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Vaccinia virus (VV) is the prototypical member of the orthopoxvirus genus of the Poxviridae family, and is currently being evaluated as a vector for vaccine development and cancer cell-targeting therapy. Despite the importance of studying poxvirus effects on the human immune system, reports of the direct interactions between poxviruses and primary human leukocytes (PHLs) are limited. We studied the specific molecular events that determine the VV tropism for major PHL subsets including monocytes, B cells, neutrophils, NK cells, and T cells. We found that VV exhibited an extremely strong bias towards binding and infecting monocytes among PHLs. VV binding strongly co-localized with lipid rafts on the surface of these cell types, even when lipid rafts were relocated to the cell uropods upon cell polarization. In humans, monocytic and professional antigen-presenting cells (APCs) have so far only been reported to exhibit abortive infections with VV. We found that monocyte-derived macrophages (MDMs), including granulocyte macrophage colony-stimulating factor (GM-CSF)-polarized M1 and macrophage colony-stimulating factor (M-CSF)-polarized M2, were permissive to VV replication. The majority of virions produced in MDMs were extracellular enveloped virions (EEV). Visualization of infected MDMs revealed the formation of VV factories, actin tails, virion-associated branching structures and cell linkages, indicating that infected MDMs are able to initiate de novo synthesis of viral DNA and promote virus release. Classical activation of MDMs by LPS plus IFN-γ stimulation caused no effect on VV replication, whereas alternative activation of MDMs by IL-10 or LPS plus IL-1β treatment significantly decreased VV production. The IL-10-mediated suppression of VV replication was largely due to STAT3 activation, as a STAT3 inhibitor restored virus production to levels observed without IL-10 stimulation. In conclusion, our data indicate that PHL subsets express and share VV protein receptors enriched in lipid rafts. We also demonstrate that primary human macrophages are permissive to VV replication. After infection, MDMs produced EEV for long-range dissemination and also form structures associated with virions which may contribute to cell-cell spread.

Page generated in 0.0768 seconds